Новое на san-epidem.ru дезинфекция ванн санэпидемстанция вызвать на дом

10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер

Перенос О2 из альвеолярного газа в кровь и CO2 из крови в альвеолярный газ происходит исключительно путем диффузии. Ее движущей силой служат разности (градиенты) парциальных давлений (напряжений) O2 и СО2 по обе стороны аэрогематического барьера, образованного альвеолокапиллярной мембраной (см. табл. 10.1). Никакого механизма активного транспорта газов здесь нет.

Кислород и углекислый газ диффундируют в растворенном состоянии: все воздухоносные пути увлажнены слоем слизи. Важное значение для облегчения диффузии 02 имеет сурфактантная выстилка альвеол, так как кислород растворяется в фосфолипидах, входящих в состав сурфактантов, гораздо лучше, чем в воде.

В ходе диффузии через аэрогематический барьер молекулы растворенного газа должны преодолеть (рис. 10.25): слой сурфактанта, альвеолярный эпителий,

Рис. 10.25 Аэрогематический барьер

1 — альвеола, 2 — эпителий альвеолы, 3 — эндотелий капилляра, 4 — интерстициальное пространство, 5 — основная мембрана, 6 — эритроцит, 7 — капилляр.

Рис. 10.26 Увеличение напряжения кислорода в эритроцитах во время прохождения их через легочные капилляры

Вверху — поглощение кислорода эритроцитами, внизу — кривая зависимости напряжения кислорода в капилляре РО2 от времени диффузии t; РаО2 парциальное давление в альвеолах; РвО2 — среднее напряжение кислорода в венозной крови; Рк О2 среднее для всего времени диффузии значение напряжения кислорода в капилляре; t время диффузионного контакта.

 

две основные мембраны, эндотелий кровеносного капилляра. Ввиду того что в транспорте дыхательных газов существенную роль играют эритроциты, к этому списку добавляются слой плазмы и мембрана эритроцита.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и большой их газообменной поверхностью (у человека она составляет около 100 м2), а также малой толщиной (порядка 1 мкм) альвеолокапиллярной мембраны. Диффузионная способность легких у человека равна примерно 25 мл О2/мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. При учете того, что градиент Ро2 между притекающей к легким венозной кровью и альвеолярным газом обычно превышает 50 мм рт. ст., этого оказывается вполне достаточно, чтобы за время прохождения через легочный капилляр (около 0,8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным Ро2. Несколько более низкое (на 3—6 мм рт. ст.) артериальное Роз по сравнению с альвеолярным объясняется проникновением венозной крови в артериальную через невентилируемые альвеолы, а также артериовенозные шунты. Лишь при ускорении легочного кровотока, например при тяжелой мышечной работе, когда время прохождения крови через капилляры альвеол может сокращаться до 0,3 с, наблюдается недонасыщение крови кислородом в легких, что, однако, возмещается увеличением минутного объема крови (рис. 10.26).

Что касается диффузии СО2 из венозной крови в альвеолы, то даже сравнительно небольшого градиента Рсо2, (6—10 мм рт. ст.) здесь оказывается вполне достаточно, так как растворимость углекислого газа в 20—25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры Рсо2 в ней оказывается почти равным альвеолярному — обычно около 40 мм рт. ст.