8.1. КОМПОНЕНТЫ ИММУННОЙ СИСТЕМЫ

К основным клеточным иммунным компонентам относятся все лейкоциты крови, представляющие собой так называемые иммунокомпетентные клетки. Зрелые лейкоциты объединяют пять популяций клеток:

лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Иммунокомпетентные клетки можно обнаружить практически в любой части организма, однако сконцентрированы они преимущественно в местах своего образования  первичных и вторичных лимфоидных органах (рис. 8.1). Первичным местом образования всех этих клеток является орган кроветворения — красный костный мозг, в синусах которого образуются и проходят полный цикл дифференцировки моноциты и все гранулоциты (нейтрофилы, эозинофилы, базофилы). Здесь же начинается дифференцировка лимфоцитов. Лейкоциты всех популяций происходят от единой костномозговой полипотентной стволовой кроветворной клетки, пул которой является самоподдерживающимся (рис. 8.2).

Различные направления дифференцировки стволовых клеток определяются специфическим микроокружением их в очагах костномозгового кроветворения и продукцией специфических гемопоэтических факторов, в том числе колониестимулирующих, кейлонов, простагландинов и других. Помимо указанных факторов, в систему контроля за образованием и дифференцировкой иммунокомпетентных клеток в костном мозге входит группа общеорганизменных регуляторных веществ, важнейшими из которых являются гормоны и медиаторы нервной системы.

Лимфоциты в организме представлены двумя большими субпопуляциями, которые различаются по гистогенезу и иммунным функциям. Это Т—лимфоциты, обеспечивающие клеточный иммунитет, и В—лимфоциты, ответственные за

осуществление антителообразования, т. е. гуморального иммунитета. Если В—лимфоциты весь цикл дифференцировки до зрелых В—клеток проходят в костном мозге, то Т—лимфоциты на стадии пре—Т—лимфоцитов мигрируют из него по кровотоку в другой первичный лимфоидный орган — тимус, в котором заканчивается их дифференцировка с образованием всех клеточных форм зрелых Т—клеток.

Принципиально отличается от них особая субпопуляция лимфоцитов — нормальные (естественные) киллеры (НК) и К—клетки. НК являются цитотоксическими клетками, осуществляющими разрушение клеток—мишеней (главным образом, опухолевых клеток и клеток, зараженных вирусами) без предварительной иммунизации, т. е. в отсутствие антител. К—клетки способны разрушать клетки—мишени, покрытые небольшим количеством антител.

После созревания иммунокомпетентные клетки, выходят в кровоток, по которому моноциты и гранулоциты мигрируют в ткани, а лимфоциты направляются во вторичные лимфоидные органы, где происходит антигензависимая фаза их дифференцировки. Кровеносная система — основная магистраль транспорта и рециркуляции иммунных компонентов, в том числе иммунокомпетентных клеток. В крови, как правило, не происходит никаких иммунологических реакций. Кровоток только доставляет клетки к месту их функционирования.

Гранулоциты (нейтрофилы, эозинофилы, базофилы) после созревания в костном мозге выполняют лишь эффекторную функцию, после однократного выполнения которой они гибнут. Моноциты после созревания в костном мозгу оседают в тканях, где образовавшиеся из них тканевые макрофаги также выполняют эффекторную функцию, но в течение длительного периода и многократно. В отличие от всех других клеток, лимфоциты после созревания их в костном мозгу (В—клетки) или тимусе (Т—клетки) поступают во вторичные лимфоидные органы (рис. 8.3), где

 

 

Рис. 8.1 Лимфомиелоидный комплекс

КМ — костный мозг; КС — кровеносные сосуды; ЛТК — лимфоидная ткань кишки; ЛС — лимфатические сосуды; ЛУ — лимфатические узлы; СЛ — селезенка; Т — вилочковая железа (тимус).

 

Рис. 8.2         Полипотентная стволо­вая кроветворная клетка и ее потомки         ЦТЛ — цитотоксический Т—лимфоцит (Т—киллер).

 

 

 

Рис. 8.3 Схема образования Т— и В—лимфоцитов и их участия в клеточном и гуморальном иммунитете

основной их функцией является размножение в ответ на антигенный стимул с появлением короткоживущих специфических эффекторных клеток и долгоживущих клеток памяти. 'Иммунологическая память — способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым ответом, чем на первую иммунизацию.

Вторичные лимфоидные органы разбросаны по всему организму, чтобы обслуживать все ткани и участки поверхности. К вторичным лимфоидным органам относятся селезенка, лимфатические узлы, органные скопления лимфоидной ткани у слизистых оболочек — червеобразный отросток (аппендикс), пейеровы бляшки, миндалины и другие образования глоточного лимфоидного кольца солитарные (одиночные) .лимфоидные фолликулы стенок кишки и влагалища, а также диффузные скопления лимфоидных клеток в субэпителиальных пространствах всех слизистых оболочек организма и новообразованные очаги лимфоидной ткани в грануляционной ткани вокруг хронических очагов воспаления.

Во вторичных лимфоидных органах Т— и В—лимфоциты впервые контактируют с чужеродными для организма антигенами. Такой контакт осуществляется преимущественно в лимфоидной ткани, по месту поступления антигена. После контакта происходит размножение клонов (от греч. klon — росток, отпрыск) Т— и В—клеток, специфичных к данному антигену, и дифференцировка большей части клеток этих клонов в конечные эффекторные короткоживущие (Т—эффекторы из Т—лимфоцитов и плазматические клетки из В—лимфоцитов). Часть Т— и В—лимфоцитов этих специфических к антигену клонов размножается, не переходя в короткоживущие эффекторные клоны, и превращается в клетки иммунологической памяти. Последние частично мигрируют в другие вторичные лимфоидные органы, в результате чего в них возникает повышенный уровень лимфоцитов, специфичных к антигену, атаке которого организм подвергся хотя бы один раз. Благодаря этому создается иммунологическая память на конкретный антиген во всей иммунной системе.

Поступление лимфоцитов из кровотока во вторичные лимфоидные органы жестко контролируется. Существенная часть зрелых Т— и В—лимфоцитов постоянно циркулирует в кровотоке между лимфоидными органами (так называемые рециркулирующие лимфоциты). Под рециркуляцией лимфоцитов понимают процесс миграции лимфоцитов из крови в органы иммунной системы, периферические ткани и обратно в кровь (рис. 8.4). Лишь небольшая часть лимфоцитов относится к нерециркулирующему пулу.

Функциональное назначение рециркуляции лимфоцитов состоит в осуществлении постоянного «иммунного надзора» тканей организма иммунокомпетентными лимфоцитами, в эффективном обнаружении чужеродных и измененных собственных антигенов и снабжении органов лимфоцитопоэза информацией о появлении антигенов в различных тканях. Различают быструю рециркуляцию (осуществляется в течение нескольких часов) и медленную (длится неделями). В ходе быстрой рециркуляции лимфоциты крови специфически связываются со стенкой специализированных сосудов, расположенных в лимфоидных органах, — посткапиллярных венул с высоким эндотелием — и далее мигрируют через эти эндотелиальные клетки в лимфоидную ткань, затем в лимфатические сосуды и через грудной лимфатический проток возвращаются в кровь. Этим путем мигрирует около 90% лимфоцитов, имеющихся в лимфе грудного протока. При медленной рециркуляции лимфоциты крови мигрируют через посткапиллярные венулы с плоским эндотелием, характерные для неиммунных органов, в различные периферические ткани, затем попадают в лимфатические сосуды, лимфатические узлы и через лимфоток в грудной лимфатический проток снова в кровь. Таким путем рециркулирует примерно 5—10% лимфоцитов, содержащихся в лимфе грудного протока.

Специфическое связывание лимфоцитов со стенками посткапиллярных венул с высоким эндотелием происходит благодаря наличию на поверхности эндотелиальных клеток определенных молекул и соответствующих им рецепторов на Т— и В—лимфоцитах (рис. 8.5). Этот механизм обеспечивает избирательное накопление в лимфоузлах и других вторичных лимфоидных органах лимфоцитов определенных популяций. В пейеровых бляшках содержится около 70% В—лимфоцитов и 10—20% Т—лимфоцитов, в то же время в периферических лимфоузлах, наоборот, около 70% Т— и 20% В—клеток. Многие Т— и В—лимфоциты, активированные антигеном, покидают место, где они были активированы, а затем после циркуляции в кровотоке возвращаются в те же или близкие к ним лимфоидные органы. Такая закономерность лежит в основе местного иммунитета органов и тканей. Среди рециркулирующих лимфоцитов большей

Рис. 8.4 Пути рециркуляции лимфоцитов

Белые стрелки — быстрая рециркуляция. Черные стрелки — медленная рециркуляция. ВЛС — выносящий лимфатический сосуд; ГП — грудной лимфатический проток; КС — кровеносный сосуд; ПКВ — посткапиллярные венулы с высоким эндотелием;

ПЛС — приносящий лимфатический сосуд, ЛС — лимфатический сосуд.

   

Рис. 8.5 Гипотетическая модель механизмов, обеспечивающих органную специфичность миграции лимфоцитов

Заселенность определенных органов теми или иными субпопуляциями лимфоцитов регулируется процессами избирательного узнавания посткапиллярных венул с вы­соким эндотелием.

 

 

скоростью миграции обладают Т—лимфоциты и клетки иммунологической памяти обоих типов.

Непосредственное участие в иммунной защите принимают также клетки кожного и слизистого покровов, создающие механический барьер на пути чужеродного антигена. В качестве механических факторов неспецифических защитных механизмов можно рассматривать слущивание (десквамацию) клеток поверхностных слоев многослойных эпителиев, выработку слизи, покрывающей слизистые оболочки, биение ресничек, осуществляющее транспорт слизи по поверхности эпителия (в респираторном тракте — мукоцилиарный транспорт). Микробы удаляются с поверхности эпителиев также током слюны, слез мочи и других жидкостей.

В осуществлении защиты организма от внедрения чужеродных клеток участвуют клетки, синтезирующие разнообразные иммунологически активные вещества (например, клетки сальных желез вырабатывают жирные кислоты клетки потовых желез — молочную кислоту, низкое значение рН которой обеспечивает антимикробное действие). Во многих секретах, продуцируемых клетками организма, содержатся бактерицидные компоненты, такие как соляная кислота в желудочном соке, спермин и цинк в сперме, лактопероксидаза в молоке, лизоцим в слезах, носовых выделениях и слюне. Известен также механизм микробного антагонизма, сущность которого состоит в том, что нормальная бактериальная флора человека может угнетать рост многих потенциально патогенных микроорганизмов и грибов вследствие конкуренции за необходимые питательные вещества или выработки таких соединений, как колицины или кислоты. Например, патогенная флора влагалища угнетается молочной кислотой, которая вырабатывается одним из видов бактерий—комменсалов. Повреждение последних с помощью антибиотиков повышает риск инфицирования паразитическими грибами и бактериями.

К гуморальным иммунным компонентам относятся самые разнообразные иммунологически активные молекулы, от простых до весьма сложных, которые продуцируются иммунокомпетентными и другими клетками и участвуют в защите организма от чужеродного или своего дефектного. Среди них, прежде всего, следует выделить вещества белковой природы — иммуноглобулины, цитокины, систему компонентов комплемента, белки острой фазы, интерферон и другие. К иммунным компонентам относятся ингибиторы ферментов, подавляющие ферментативную активность бактерий, ингибиторы вирусов, многочисленные низкомолекулярные вещества, являющиеся медиаторами иммунных реакций (гистамин, серотонин, простагландины и другие). Огромное значение для эффективной защиты организма имеют насыщенность тканей кислородом, рН среды, наличие Са2+ и Mg2+ и других ионов, микроэлементы, витамины и др.

8. 2. МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОГО (ВРОЖДЕННОГО) ИММУНИТЕТА

Неспецифические (врожденные) защитные механизмы представляют собой совокупность всех физиологических факторов, способных а) предотвратить попадание в организм или б) нейтрализовать и разрушать проникшие в него чужеродные вещества и частицы или образовавшиеся в нем собственные измененные клетки. Эти механизмы не обладают специфичностью в отношении воздействующего агента.

Помимо упоминавшихся механических и химических факторов существует несколько других способов защиты: фагоцитоз («поедание» клетками), внеклеточное уничтожение зараженных вирусами и опухолевых клеток с помощью цитотоксических факторов (клеточная цитотоксичностъ) и разрушение чужеродных клеток с помощью растворимых бактерицидных соединений.