Глава 19

ФУНКЦИЯ СЕРДЦА

Г. Антони

19.1. Строение и общая физиология сердца

Кровь может выполнять свои разнообразные функции, только находясь в постоянном движении. Это движение крови обеспечивается сердцем. Сердце можно рассматривать как два полых мышечных органа – «левое» сердце и «правое» сердце (рис. 19.1), каждое из которых состоит из предсердия и желудочка. Лишенная кислорода кровь от органов и тканей организма поступает к правому сердцу, выталкивающему ее к легким. В легких кровь насыщается кислородом, возвращается к левому сердцу и вновь поступает к органам. Таким образом, правое сердце перекачивает дезоксигенированную кровь, а левое–оксигенированную.

Отделы сосудистой системы. Движение крови по сосудам легких от правого сердца к левому называется легочным кровообращением (малый круг). Кровоснабжение всех остальных органов (и отток крови от них) носит название системного кровообращения (большой круг). Разумеется, фактически оба этих отдела составляют единое кровеносное русло, в двух участках которого (правом и левом сердце) крови сообщается кинетическая энергия (рис. 19.1).

Открытие замкнутой кровеносной системы принадлежит английскому врачу Уильяму Гарвею (1578–1657). В своей знаменитой работе "De motu cordis et sanguinis in animalibus" («О движении сердца и крови у животных»), опубликованной в 1628 г., он с безупречной логикой опроверг господствовавшее тогда представление, введенное Галеном (120 201), который считал, что кровь образуется из пищевых веществ в печени, притекает к сердцу по полой вене и затем по венам поступает к органам и используется ими.

Систола и диастола. Нагнетательная функция сердца основана на чередовании расслабления (диастолы) и сокращения (систолы) желудочков. Во время диастолы желудочки заполняются кровью, а во время систолы они выбрасывают ее в крупные артерии (аорту и легочный ствол). У выхода из желудочков расположены клапаны, препятствующие обратному поступлению крови из артерий в сердце. Перед тем как заполнить желудочки, кровь притекает по крупным венам (полым и легочным) в предсердия. Систола предсердий предшествует систоле желудочков; таким образом, предсердия служат как бы вспомогательными насосами, способствующими заполнению желудочков.

Артерии и вены. Эти два типа сосудов различаются по тому, в каком направлении течет по ним кровь, но не по составу самой крови. По венам кровь поступает к сердцу, а по артериям оттекает от него. В системном кровообращении оксигенированная кровь течет по артериям, а в легочном–по венам. Таким образом, когда кровь, насыщенную кислородом, называют «артериальной», имеют в виду системное кровообращение.

Строение сердца у плода. Функциональное разделение сердца на правый (легочный) и левый (системный) отделы происходит только после рождения. У плода же предсердия сообщаются при помощи овального отверстия, а аорта и легочная артерия соединяются широким артериальным протоком (боталлов проток) (рис. 19.2). Таким образом, в период внутриутробного развития предсердия и желудочки действуют как единый полый орган, легкие же находятся в спавшемся, нефункционирующем состоянии, и кровоток в них мал. Кровь плода насыщается кислородом в плаценте.

Изменения сердца у новорожденных. После рождения, в связи со становлением легочного дыхания, легкие расправляются, гидродинамическое сопротивление их сосудов падает и давление в левом предсердии становится больше, чем в правом. В результате клапан, расположенный у овального отверстия, прилегает к этому отверстию и временно прикрывает его; одновременно начинается постепенное заращение артериального протока. Такая перестройка сосудистой системы завершается за две недели;

к этому сроку и овальное отверстие, и артериальный проток полностью закрываются. Это приводит к тому, что параллельное соединение обоих отделов сердца (у плода) превращается в последовательное (рис. 19.2). Вследствие такой реорганизации сосудистого русла рабочая нагрузка на левое сердце становится значительно больше, чем на правое. Поскольку сопротивление сосудистого русла легких примерно в 8 раз меньше, чем в системном кровообращении, правый желудочек должен затрачивать на выброс крови в малый круг меньшую силу, чем левый при выбросе крови в большой круг. В результате этой разницы в рабочей нагрузке левый желудочек развивается интенсивнее, и мышечная масса его становится в три раза больше, чем правого. У взрослого человека масса сердца составляет около 0,5% общего веса тела.

 

 

Функциональные возможности сердца. Требования, предъявляемые организмом к системе кровообращения, существенно варьируют, поэтому деятельность сердца должна изменяться в широких пределах. Так, минутный объем сердца человека в покое (количество крови, выбрасываемой желудочком за 1 мин) составляет около 5 л, а при тяжелой физической нагрузке возрастает почти до 30 л. Оптимальная адаптация сердца возможна лишь в том случае, если все его функции (распространение возбуждения, сокращение, деятельность клапанов,

Рис. 19.1. А. Камеры сердца и крупные сосуды (вид спереди) направление кровотока указано стрелками. Б. Схема взаимосвязи обеих половин сердца с большим и малым кругами кровообращения

Рис. 19.2. А. Сердце плода; обе половины сердца соединены параллельно; легочное сосудистое русло обособлено. Б. После рождения соединение правого и левого сердец становится последовательным в результате развития легочного кровообращения и закрытия «шунтов»–овального отверстия в межпредсердной перегородке и артериального протока, соединяющего аорту и легочную артерию

коронарное кровообращение и т.д.) изменяются в строгом соответствии друг с другом. Малейшие отклонения от нормы могут привести к серьезным нарушениям сердечной деятельности.

19.2. Основные механизмы возбуждения и электромеханического сопряжения в сердце

Функциональным элементом сердца служит мышечное волокно–цепочка из клеток миокарда, соединенных «конец в конец» и заключенных в общую саркоплазматическую оболочку (основную мембрану). В зависимости от морфологических и функциональных особенностей в сердце различают два типа волокон.

1. Волокна рабочего миокарда предсердий и желудочков, составляющие основную массу сердца и обеспечивающие его нагнетательную функцию.

2. Волокна водителя ритма (пейсмекера) и проводящей системы, отвечающие за генерацию возбуждения и проведение его к клеткам рабочего миокарда.

Возникновение и распространение возбуждения

Мышца сердца (миокард), подобно нервной ткани и скелетным мышцам, принадлежит к возбудимым тканям. Это означает, что волокна миокарда обладают потенциалом покоя, отвечают на надпороговые стимулы генерацией потенциалов действия и способны проводить эти потенциалы без затухания (бездекрементно). Межклеточные соединения в сердце (к которым относятся, в частности, так называемые вставочные диски, выявляемые при микроскопии) не препятствуют проведению возбуждения [24]. Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий: возбуждение, возникающее в каком–либо из этих отделов, охватывает все без исключения невозбужденные волокна. Благодаря этой особенности сердце подчиняется закону «все или ничего»: на раздражение оно либо отвечает возбуждением всех волокон, либо (если раздражитель подпороговый) не реагирует вовсе. Этим оно отличается от нервов и скелетных мышц, где каждая клетка возбуждается изолированно, и поэтому только в тех клетках, на которые наносят надпороговые раздражения, возникают потенциалы действия.

Автоматизм. Ритмические сокращения сердца возникают под действием импульсов, зарождающихся в нем самом. Если изолированное сердце поместить в соответствующие условия, оно будет продолжать биться с постоянной частотой. Это свойство называется автоматизмом. В норме ритмические импульсы генерируются только специализированными клетками водителя ритма (пейсмекера) и проводящей системы сердца, различные отделы которой схематично показаны на рис. 19.3.

Геометрия распространения возбуждения в сердце.

В норме водителем ритма служит синоатриальный (СА) узел, расположенный в стенке правого предсердия у места впадения в него верхней полой вены. Частота разрядов СА–узла в покое составляет около 70 в 1 мин. От этого узла возбуждение распространяется сначала по рабочему миокарду обоих предсердий. Единственный путь, по которому импульсы могут пройти к желудочкам, изображен на рис. 19.3 красным; остальные участки атриовентрикулярного соединения состоят из невозбудимой соединительной ткани. При распространении возбуждения по проводящей системе оно на короткое время задерживается в атриовентрикулярном (АВ) узле. Остальные отделы специализированной системы–пучок Гиса с его левой и правой ножками и их конечные разветвления – волокна Пуркинье– проводят импульсы довольно быстро (со скоростью примерно 2 м/с), поэтому различные отделы желудочков достаточно синхронно охватываются возбуждением. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с.

 

 

Рис. 19.3. Схема расположения водителя ритма (пейсмекера) и проводящей системы на фронтальном разрезе сердца

Соподчинение водителей ритма. Автоматические сокращения сердца зависят не только от деятельности СА–узла. Как указывалось выше, остальные отделы проводящей системы также способны спонтанно генерировать импульсы, однако собственная частота разрядов клеток этих отделов мала; она тем ниже, чем дальше от пейсмекера расположены клетки. Благодаря этому в нормальных условиях потенциал действия в этих клетках возникает в результате прихода возбуждения от более часто разряжающихся верхних отделов, и их собственный автоматизм «не успевает» проявиться. Поскольку наибольшей частотой спонтанной активности обладает. СА–узел, он служит пейсмекером первого порядка (ведущим).

Заместительные ритмы. Если по той или иной причине возбуждение СА–узла не возникает либо (при синоатриальной блокаде) не может перейти на предсердие, роль водителя ритма берет на себя АВ–узел–пейсмекер второго порядка (частота АВ–ритма равна 40–60/мин). Если же проведение возбуждения от предсердий к желудочкам полностью нарушено – полная (поперечная) блокада, то желудочки сокращаются в ритме пейсмекера третьего порядка, расположенного в вентрикулярной проводящей системе. СА–узел называют номотопным (нормально расположенным) центром, а очаги возбуждения в остальных отделах проводящей системы гетеротопными (ненормально расположенными) центрами.

В случае полной поперечной блокады предсердия и желудочки сокращаются независимо друг от друга – предсердия в ритме СА–узла, а желудочки со значительно меньшей частотой, присущей пейсмекерам третьего порядка (30–40/мин). При внезапном возникновении полной поперечной блокады желудочковые центры автоматизма начинают функционировать лишь через несколько секунд. Во время этой предавтоматической паузы кровоснабжение головного мозга ухудшается, что может привести к потере сознания и судорогам (приступ Эдемса–Стокса). Если вентрикулярные водители ритма не включаются, то остановка желудочков может привести к необратимому повреждению мозга и даже к смертельному исходу.

Искусственные водители ритма. Даже в том случае, если автоматизм сердца полностью исчезает, возбудимость рабочего миокарда в течение некоторого времени сохраняется. Благодаря этому можно поддерживать

Рис. 19.4. А. Конфигурация потенциала действия клетки миокарда. Б. Изменения проницаемости для Na+, Ca2+ и K+ в процессе возникновения потенциала действия сердца. В. Величина и направление ионных потоков и истинный поток во время потенциала действия. Величина (показана толщиной стрелок) потока ионов зависит от проницаемости и от разницы между мембранным потенциалом Еm и равновесным потенциалом для данного иона [т.е. iNa = gNa·m — ЕNа)]

 

кровообращение путем искусственного электрического раздражения желудочков. При необходимости импульсы тока можно подавать через интактную грудную клетку. В случае частых приступов Эдемса – Стокса, а также при полной поперечной блокаде с низкой частотой сокращений желудочков искусственное раздражение сердца иногда применяют годами. В этом случае импульсы подаются к сердцу по проволочным электродам от миниатюрных водителей ритма, имплантируемых под кожу и работающих от батареек.

Блокада ножек пучка Гиса. Если проведение по одной из ножек пучка Гиса нарушено, а вторая ножка или одна из ее ветвей функционирует нормально, возникает неполная блокада. Возбуждение при этом распространяется на миокард обоих желудочков от терминалей непораженных ветвей. Разумеется, при этом процесс охвата возбуждением более длителен, чем в норме.

Характеристики процесса возбуждения на клеточном уровне

Как в нервных клетках и в волокнах скелетных мышц, потенциал действия (ПД) в кардиомиоцитах начинается с быстрой реверсии мембранного потенциала от уровня покоя (примерно — 90 мВ) до пика ПД (примерно +30 мВ) (рис. 19.4). За этой фазой быстрой деполяризации, продолжительность которой составляет лишь 1 –2 мс, следует более длительная фаза плато– специфическая особенность клеток миокарда. Затем наступает фаза реполяризации, по окончании которой восстанавливается потенциал покоя. Длительность потенциала действия кардиомиоцитов составляет 200–400 мс, т. е. более чем в 100 раз превышает соответствующую величину для скелетных мышц и нервных волокон. Как будет показано ниже, это имеет большое функциональное значение.

Ионные механизмы возбуждения. Потенциал действия возникает в результате изменений мембранного потенциала, проницаемости для различных ионов и ионных потоков. Основы ионной теории возбуждения подробно рассмотрены в гл. 1; здесь же мы кратко остановимся на некоторых положениях этой теории применительно к особенностям клеток миокарда [2, 9, 20, 23]. Потенциал покоя этих клеток создается преимущественно за счет К+–потенциала, поддерживаемого благодаря работе электрогенного натриевого насоса. Как и в нервных клетках, быстрая восходящая фаза ПД кардиомиоцитов обусловлена коротким, но значительным повышением проводимости для натрия (gNa)> что приводит к лавинообразному входу Na+ (рис. 19.4). Однако этот начальный входящий ток Na + быстро инактивируется (в этом кардиомиоциты также сходны с нервными клетками), поэтому значительное замедление реполяризации в клетках миокарда обусловлено иными механизмами. К ним относятся 1) медленно развивающееся увеличение проводимости для Са2+ (gCa) в результате которого возникает деполяризующий входящий ток кальция (медленный входящий ток) [21]; 2) снижение проводимости для К+ (gK), возникающее при деполяризации и уменьшающее реполяризующий выходящий ток К+ [2, 23].

Реполяризация в клетках миокарда обусловлена постепенным уменьшением gCa, а также тем, что при увеличении отрицательного мембранного потенциала повышается gK. Уменьшение gCa приводит к снижению медленного входящего тока, а повышение gK—к увеличению выходящего тока К+. В состоянии покоя деполяризующие и реполяризующие токи находятся в равновесии.

Механизмы, лежащие в основе этого медленного входящего тока Са2+ и быстрого входящего тока Na+ различаются по многим параметрам, в том числе по временному ходу, зависимости от потенциала и чувствительности к блокирующим агентам. Так называемый быстрый натриевый канал блокируется тетродотоксином, а медленный кальциевый–ионами Cd2+ и органическими антагонистами Ca2+ (например, верапамилом, нифедипином, дилтиаземом) [5]. Порог активации натриевого канала равен примерно —60 мВ, а кальциевого–около —30 мВ. При деполяризации мембраны до —40 мВ быстрый натриевый канал инактивируется. При этом под действием сверхпороговых раздражителей могут возникать так называемые кальциевые потенциалы действия, имеющие более пологий передний фронт (так как медленный входящий ток в этом случае обусловливает не только плато, но и передний фронт ПД) и меньшую скорость распространения («медленный ответ» [3]).

Период рефрактерности. Определенным фазам цикла возбуждения в сердце, как и в других возбудимых тканях, соответствуют периоды

Рис. 19.5. Периоды абсолютной и относительной рефрактерности в цикле возбуждения миокардиоцита. Значения порогов во время периода относительной рефрактерности указаны в единицах, кратных минимальному порогу. Во время периода абсолютной рефрактерности (от начала потенциала действия и примерно до конца плато) порог раздражения бесконечно высок

 

невозбудимости (абсолютной рефрактерности) и сниженной возбудимости (относительной рефрактерности). На рис. 19.5 показаны эти периоды и их связь с различными фазами ПД. Во время периода абсолютной рефрактерности клетка невозбудима; затем следует период относительной рефрактерности, в течение которого возбудимость постепенно восстанавливается. Таким образом, чем больше сила повторного стимула, тем раньше можно вызвать очередной потенциал действия. ПД, возникающие в начальной стадии периода относительной рефрактерности, нарастают более полого, имеют меньшую амплитуду и длительность (рис. 19.5).

Рефрактерность связана главным образом с инактивацией быстрых натриевых каналов, наступающей при длительной деполяризации. Эти каналы начинают восстанавливаться лишь после того, как мембрана реполяризуется примерно до уровня —40 мВ. Таким образом, продолжительность рефрактерного периода, как правило, тесно связана с длительностью потенциала действия. Если ПД укорачивается или удлиняется, этому соответствуют такие же изменения периода рефрактерности. Однако препараты, обладающие местным анестезирующим действием, могут подавлять быстрые натриевые каналы и замедлять восстановление проницаемости после инактивации, вызывая тем самым удлинение рефрактерного периода, но не влияя на продолжительность потенциала действия.

Функциональное значение периода рефрактерности. Длительный рефракторный период предохраняет миокард от слишком быстрого повторного возбуждения. Такое возбуждение могло бы нарушить нагнетательную функцию сердца. Вместе с тем фаза рефрактерности препятствует круговому движению возбуждения по миокарду, которое привело бы к нарушению ритмичного чередования сокращения и расслабления. В норме рефракторный период клеток миокарда больше, чем время распространения возбуждения по предсердиям или желудочкам. Поэтому после того, как волна возбуждения из СА–узла или гетеротопного очага охватит полностью весь миокард, она угасает; обратный вход этой волны невозможен, так как все сердце находится в состоянии рефрактерности.

Зависимость длительности потенциала действия от частоты. Как показано на рис. 19.5, потенциал действия, возникающий сразу после окончания периода относительной рефрактерности предыдущего цикла возбуждения, характеризуется обычной крутизной переднего фронта и амплитудой. Однако длительность ПД значительно уменьшена. Таким образом, существует тесная связь между продолжительностью потенциала действия и длительностью интервала между началом этого ПД и концом предыдущего, т. е. между длительностью и частотой ПД. На рис. 19.6 приведена оригинальная запись для

 

Рис. 19.6. Наложение потенциалов действия одиночного волокна изолированной трабекулярной мышцы желудочка человека, полученной при операции на сердце. При ступенчатом увеличении частоты раздражения от 24 до 162 имп/мин потенциал действия укорачивается [по Trautwein et al. Circul. Rec., 10, 306 (1962)]

полоски желудочка человека, иллюстрирующая эту зависимость.

Описанный эффект обусловлен главным образом тем, что gK после окончания реполяризации еще повышена и лишь через некоторое время постепенно возвращается к исходному уровню (рис. 19.4). В том случае, если интервал между ПД мал, это повышение проницаемости для К+ приводит к ускорению реполяризации в очередных циклах возбуждения.

Клеточные механизмы возникновения возбуждения в сердце. Клетки рабочего миокарда предсердий и желудочков не обладают автоматизмом. Потенциалы действия в них возникают лишь под влиянием распространяющегося возбуждения: от возбужденных участков к невозбужденным течет ток, вызывающий деполяризацию последних. Когда в результате этой деполяризации мембранный потенциал достигает критического (порогового) значения, возникает потенциал действия. Что же касается клеток сердца, обладающих автоматизмом, то они спонтанно деполяризуются до критического уровня. Это явление можно наблюдать при прямой внутриклеточной регистрации мембранных потенциалов клеток пейсмекера. Как видно из рис. 19.7, в таких клетках за фазой реполяризации следует фаза медленной диастолической деполяризации, начинающаяся сразу по достижении максимального диастолического потенциала и приводящая к снижению мембранного потенциала до порогового уровня и возникновению ПД. В отличие от потенциала действия медленная диастолическая деполяризация (пейсмекерный потенциал, препотенциал)–это местное, нераспространяющееся возбуждение.

Истинные и латентные водители ритма. В норме ритм сердечных сокращений задают лишь несколько клеток синоатриального узла так называемые истинные водители ритма. Все остальные клетки проводящей системы разряжаются, как и рабочий миокард, под действием распространяющегося возбуждения. Эти клетки называют латентными (скрытыми, потенциальными) водителями ритма. Потенциал действия в них возникает под влиянием токов от возбужденных участков до того, как в результате их собственной медленной диастолической деполяризации их мембранный потенциал достигнет порогового уровня. На рис. 19.7, где приведены потенциалы действия истинного и латентного пейсмекеров, показано, каким образом латентный водитель ритма может взять на себя ведущую функцию при выключении истинного водителя ритма. В связи с тем что в латентных водителях ритма медленная диастолическая деполяризация позже достигает порогового уровня, частота их разрядов ниже. Клетки же рабочего миокарда не обладают спонтанной деполяризацией, и их потенциалы действия, возникающие под влиянием внешних токов, характеризуются крутым передним фронтом на фоне постоянного потенциала покоя (рис. 19.7, нижняя кривая).

Ионные механизмы пейсмекерного потенциала. В соответствии с современными представлениями медленная диастолическая деполяризация в синоатриальном узле обусловлена иными механизмами, нежели в желудочковой проводящей системе [17]. Во–первых, для клеток СА–узла характерен более высокий постоянный фоновый натриевый ток, препятствующий достижению равновесного калиевого потенциала Ek . В связи с этим мембранный потенциал этих клеток постоянно низок, и быстрые натриевые каналы (даже если они в этих клетках имеются) инактивированы. Во время фазы реполяризации потенциала действия проницаемость мембраны для калия увеличивается, становясь выше уровня покоя. В результате мембранный потенциал приближается к равновесному калиевому потенциалу Еk и достигает максимального диастолического значения (рис. 19.7). Затем gK постепенно снижается до уровня покоя и мембранный потенциал все более отличается от Еk, достигая в конечном счете уровня, при котором активируется медленный входящий ток, отвечающий за передний фронт ПД в данных клетках (таким образом, их потенциалы действия сходны с ПД деполяризованных клеток желудочков; см. выше). Сходные механизмы действуют и в АВ–узле.

Что же касается клеток желудочковой проводящей системы, то у них фоновая натриевая проницаемость в норме мала. В связи с этим мембранный потенциал сразу после окончания ПД достигает довольно высокого уровня, что обусловливает значительное восстановление быстрого натриевого тока. Далее начинается диастолическая деполяризация, которая в этих клетках обусловлена особым ионным каналом, не действующим в клетках СА–узла; этот канал активируется лишь при существенной поляризации и пропускает как Na+ так и К+ [16]. Передний фронт ПД в этих клетках крутой, так как создается быстрым входящим натриевым током.

 

Разновидности ПД в клетках сердца. В различных участках сердца потенциалы действия характеризуются определенными особенностями. ПД для некоторых отделов сердца приведены на рис. 19.8, причем потенциалы верхних отделов изображены в верхней части рисунка, а нижних–в нижней. Интервал от нулевой вертикальной линии до переднего фронта ПД соответствует времени задержки возбуждения того или иного отдела по отношению к синусному узлу. По мере удаления от синусного узла того или иного отдела проводящей системы наклон кривой медленной диастолической деполяризации клеток становится все менее крутым. Крутизна переднего фронта и амплитуда потенциала действия в клетках СА– и АВ–узлов существенно ниже, чем в остальных отделах проводящей системы. Длительность плато и соответственно рефракторного периода в рабочих клетках предсердий меньше, чем в миокарде желудочков. Окончания волокон Пуркинье обладают весьма длительными потенциалами действия и поэтому играют роль «частотного фильтра», препятствующего слишком частым сокращениям желудочков при чрезмерно высокой частоте возбуждения предсердий.

Рис. 19.7. Конфигурация потенциалов действия различных отделов проводящей системы и рабочего миокарда

Эктопические водители ритма. Способностью к спонтанному возбуждению обладают более примитивные клетки, а не высокоспециализированные рабочие кардиомиоциты. На ранних стадиях эмбрионального развития этой способностью обладают все клетки закладки сердца. По мере дифференцировки клеток предсердий и желудочков автоматизм у них исчезает и появляется устойчивый высокий потенциал покоя. Однако при некоторых патологических состояниях, связанных с частичной деполяризацией мембран (катэлектротон, растяжение, гипокалиемия, действие ионов Ва2+, стабильность потенциала покоя у этих клеток утрачивается, и в результате в них может появляться диастолическая деполяризация, характерная для водителей ритма. При определенных условиях их разряды могут влиять на ритм сердца. Вместе с тем деполяризация, вызванная повышением уровня K+, не приводит к повышению автоматизма, так как одновременно увеличивается проводимость для К+–что подавляет спонтанную активность. Центр автоматизма, не относящийся к проводящей системе, называется эктопическим очагом (или фокусом).

Рис. 19.8. Типичная конфигурация потенциалов действия (ПД) различных отделов сердца. Сплошными линиями изображены ПД пейсмекера и проводящей системы. Проекция начала ПД того или иного отдела на горизонтальную шкалу соответствует времени прихода волны возбуждения в этот отдел

 

 

Связь между возбуждением и сокращением (электромеханическое сопряжение)

Сокращение сердца, как и скелетных мышц, запускается потенциалом действия. Тем не менее временные соотношения между возбуждением и сокращением в этих двух типах мышц различны. Длительность потенциала действия скелетных мышц составляет лишь несколько миллисекунд, и сокращение их начинается тогда, когда возбуждение уже почти закончилось. В миокарде же возбуждение и сокращение в значительной степени перекрываются во времени (рис. 19.9, А). Потенциал действия клеток миокарда заканчивается только после начала фазы расслабления. Поскольку последующее сокращение может возникнуть лишь в результате очередного возбуждения, а это возбуждение в свою очередь возможно только по окончании периода абсолютной рефрактерности предшествующего потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией одиночных сокращений, или тетанусом.

Это свойство миокарда – неспособность к состоянию тетануса–имеет большое значение для нагнетательной функции сердца; тетаническое сокращение, продолжающееся дольше периода изгнания крови, препятствовало бы наполнению сердца. Вместе с тем сократимость сердца не может регулироваться путем суммации одиночных сокращений, как это происходит в скелетных мышцах, сила сокращений которых в результате такой суммации зависит от частоты потенциалов действия. Сократимость миокарда в отличие от скелетных мышц не может изменяться и путем включения различного числа двигательных единиц, так как миокард представляет собой функциональный синцитий, в каждом сокращении которого участвуют все волокна (закон «все или ничего»). Эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде гораздо более развит механизм регуляции сократимости путем изменения процессов возбуждения либо за счет прямого влияния на электромеханическое сопряжение.

Механизм электромеханического сопряжения в миокарде. У человека и млекопитающих структуры, которые отвечают за электромеханическое сопряжение в скелетных мышцах, в основном имеются и в волокнах сердца (рис. 19.9, внизу). Для миокарда характерна система поперечных трубочек (Т–система); особенно хорошо она развита в желудочках, где эти. тру бочки образуют продольные ответвления. Напротив, система продольных

 

Рис. 19.9. А. Сопоставление во времени потенциала действия и сокращения скелетной и сердечной мышц. Б. Схема соотношения между возбуждением, движением Са2+ и активацией сократительного аппарата

трубочек, служащих внутриклеточным резервуаром Са2+, в мышце сердца развита в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимосвязи между внутриклеточными депо Ca2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са2+ во время потенциала действия. Значение этого кальциевого тока состоит не только в том, что он увеличивает длительность потенциала действия и вследствие этого рефракторного периода (см. выше): перемещение кальция из наружной среды в клетку создает условия для регуляции силы

 

сокращения. Однако количество кальция, входящего во время ПД, явно недостаточно для прямой активации сократительного аппарата; очевидно, большую роль играет выброс Ca2+ из внутриклеточных депо, запускаемый входом Са2+ извне [24]. Кроме того, входящий в клетку Са2+ пополняет запасы Ca2+, обеспечивая последующие сокращения.

Если путем приложения кратковременного анодного тока уменьшить длительность одного потенциала действия, чтобы входящий ток Са2+ прекратился раньше, то сокращение, соответствующее этому ПД, изменится незначительно, но последующие сокращения, возникающие уже при нормальных потенциалах действия, будут существенно ослаблены. При искусственном увеличении потенциала действия наблюдается обратный эффект, т.е. усиление последующих сокращений. Если уменьшить или увеличить продолжительность нескольких ПД, то через 5–7 циклов установится равновесие, при котором сокращения будут соответственно значительно ослаблены или усилены [14].

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. Он

– играет роль пускового механизма («триггерное действие»), вызывающего сокращение путем высвобождения Са2+ (преимущественно из внутриклеточных депо);

– обеспечивает пополнение внутриклеточных запасов Са2+ в фазе расслабления, необходимое для последующих сокращений.

Механизмы регуляции сокращений. Целый ряд факторов оказывает косвенное влияние на сокращение миокарда, изменяя длительность потенциала действия и тем самым величину входящего тока Ca2+. Примеры такого влияния – снижение силы сокращений вследствие укорочения ПД при повышении внеклеточной концентрации K+ или действии ацетилхолина и усиление сокращений в результате удлинения ПД при охлаждении (табл. 19.1). Увеличение частоты потенциалов действия влияет на сократимость так же, как и повышение их длительности (ритмоинотропная зависимость, усиление сокращений при нанесении парных стимулов, постэкстрасистолическая потенциация). Так называемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с увеличением внутриклеточной фракции Са2+ [14].

Учитывая эти особенности сердечной мышцы, не приходится удивляться тому, что сила сокращений сердца быстро изменяется при изменении содержания Са2 + во внеклеточной жидкости. Удаление Са2 + из внешней среды приводит к полному разобщению электромеханического сопряжения; потенциал действия при этом остается почти неизменным, но сокращений не происходит.

Можно было бы ожидать, что в среде без кальция длительность потенциала действия будет уменьшаться, поскольку при этом нет входящего Са2+ тока, продлевающего ПД. Однако этого не происходит по нескольким причинам. Во–первых, медленный канал пропускает не только Са2+, но и Na+. При нормальной внеклеточной концентрации Са2+ вклад Na+ в медленный входящий ток невелик, однако в отсутствие кальция этот ток обеспечивается ионами Na+ Во–вторых, внутриклеточная концентрация Са2+ влияет на проницаемость для К+ при ее снижении (например, вследствие удаления Са2+ из внеклеточной среды) проницаемость для К+ уменьшается, и реполяризация ПД задерживается [20, 21].

Ряд веществ, блокирующих вход Са2+ во время потенциала действия, оказывает такой же эффект, как и удаление кальция из внешней среды. К таким веществам относятся так называемые антагонисты кальция (верапамил, нифедипин, дилтиазем) [5].

Напротив, при повышении внеклеточной концентрации Са2+ или при действии веществ, увеличивающих вход этого иона во время потенциала действия (адреналин, норадреналин), сократимость сердца увеличивается. В клинике для усиления сердечных сокращений используют так называемые сердечные гликозиды (препараты наперстянки, строфанта и т. д.).

В соответствии с современными представлениями сердечные гликозиды повышают силу сокращений миокарда преимущественно путем подавления Na+/K+–ATФaзы (натриевого насоса), что приводит к повышению внутриклеточной концентрации Na+. В результате снижается интенсивность обмена внутриклеточного Ca2+ на внеклеточный Na+ зависящего от трансмембранного градиента Na+ , и Са2+ накапливается в клетке. Это дополнительное количество Са2+ запасается в депо и может быть использовано для активации сократительного аппарата [11].

Вегетативная иннервация сердца; основные механизмы действия медиаторов вегетативной нервной системы

Сердечные центры продолговатого мозга и моста  непосредственно управляют деятельностью сердца. Их влияния передаются по симпатическим и парасимпатическим нервам и касаются частоты сокращений (хронотропное действие), силы сокращений (инотропное действие), а также скорости атриовентрикулярного проведения (дромотропное действие). Как и в остальных органах, передатчиками нервных влияний на сердце служат химические медиаторы – ацетилхолин   в   парасимпатической нервной системе и норадреналин – в симпатической.

Парасимпатическая иннервация сердца. Преганглионарные парасимпатические сердечные волокна идут в составе ветвей, отходящих от блуждающих нервов с обеих сторон в области шеи. Волокна от правого блуждающего нерва иннервируют преимущественно правое предсердие и особенно обильно синоатриальный узел. К атриовентрикулярному узлу подходят главным образом волокна от левого блуждающего нерва. Вследствие этого правый блуждающий нерв влияет преимущественно на частоту сокращений сердца, а левый–на атриовентрикулярное проведение. Парасимпатическая иннервация желудочков выражена слабо и оказывает свое влияние косвенно–за счет торможения симпатических эффектов.

Симпатическая иннервация. Симпатические нервы в отличие от блуждающих практически равномерно распределены по всем отделам сердца. Преганглионарные симпатические сердечные волокна берут начало в боковых рогах верхних грудных сегментов спинного мозга. В шейных и верхних грудных ганглиях симпатического ствола, в частности в звездчатом ганглии, эти волокна переключаются на постганглионарные нейроны. Отростки последних подходят к сердцу в составе нескольких сердечных нервов. Кроме того, симпатоадреналовая система влияет на сердце посредством катехоламинов, выделяющихся в кровь из мозгового слоя надпочечников [4].

Хронотропия. Раздражение правого блуждающего нерва или непосредственное воздействие ацетилхолином на СА–узел приводит к снижению частоты сокращений сердца (отрицательный хронотропный эффект). При сильных воздействиях возможна даже остановка сердца. Раздражение симпатических нервов или воздействие норадреналином сопровождается ускорением ритма сердца (положительный хронотропный эффект). При одновременном раздражении симпатических и блуждающих нервов обычно преобладает действие последних. Вегетативные нервы влияют на автоматизм СА–узла прежде всего путем изменения временного хода медленной диастолической деполяризации (рис. 19.10, A). Под действием блуждающих нервов диастолическая деполяризация замедляется, поэтому мембранный потенциал достигает порогового значения позже. При сильных раздражениях блуждающих нервов диастолическая деполяризация исчезает и наступает гиперполяризация клеток водителя ритма (рис. 19.11,A). Под влиянием симпатических волокон, напротив, медленная диастолическая деполяризация ускоряется, и порог достигается раньше. На оригинальных записях внутриклеточных потенциалов венозного синуса лягушки, представленных на рис. 19.11, видны эффекты блуждающих и симпатических нервов.

 

Рис. 19.10. Типичные изменения потенциалов действия СА–узла (А), АВ–узла (Б) и миокарда предсердий (5) под влиянием эфферентных вегетативных сердечных нервов или их медиаторов. Приведены также кривые изометрических сокращений предсердий. На миокард желудочков симпатические нервы оказывают такой же эффект, как и на предсердия; блуждающие же нервы либо не оказывают влияния на желудочки, либо влияют незначительно

Симпатические нервы повышают автоматизм всех отделов проводящей системы сердца, поэтому при угнетении ведущего пейсмекера именно от влияния этих нервов может зависеть, как скоро функции водителя ритма возьмет на себя пейсмекер второго порядка и насколько действенным будет его эффект. Кроме того, симпатические нервы оказывают положительное хронотропное действие на пейсмекерные клетки, спонтанная активность которых была угнетена каким–либо экзогенным фактором, например избытком К + или передозировкой препаратов, влияющих на автоматизм. В то же время под влиянием этих нервов может возрастать активность эктопических очагов возбуждения и увеличиваться опасность возникновения аритмий.

Тонус блуждающих и симпатических нервов. У большинства млекопитающих, включая человека, деятельность желудочков контролируется преимущественно симпатическими нервами. Что касается предсердий и особенно синоатриального узла, то они находятся под постоянными антагонистическими воздействиями со стороны блуждающих

 

Рис. 19.11. Влияние блуждающего (A) и симпатического (Б) нервов на активность ведущего пейсмекера сердца лягушки. Длительность раздражения соответствует перерыву в нижней прямой. Частота раздражения 20 Гц [по Hutter O.F., Trautwein W. J. Gen. Physiol, 39, 715 (1956)]

и симпатических нервов. Этот антагонизм можно выявить, например, путем перерезки или фармакологической блокады тех или иных нервов (при этом остаются лишь влияния «противоположных» нервов). При выключении парасимпатических влияний частота сокращений сердца у собаки возрастает со 100 ударов в 1 мин (приблизительно таков ритм сердца у собаки в состоянии покоя) до 150 и более. При подавлении же симпатической активности частота падает до 60 ударов в 1 мин. Эти постоянные влияния блуждающих и симпатических нервов называются их тонусом. Поскольку ритм полностью денервированного сердца (собственный ритм) существенно выше, чем частота сокращений сердца в состоянии покоя, считается, что в покое тонус блуждающих нервов преобладает над тонусом симпатических.

Инотропия. Изменения ритма сердца сами по себе оказывают значительное влияние на силу сокращений (см. выше). Кроме того, на сократимость могут непосредственно влиять сердечные нервы (рис. 9.10). Под действием блуждающих нервов сила сокращений предсердий уменьшается, и одновременно на механокардиограмме увеличивается длительность восходящей фазы (интервал от начала восходящего участка кривой до максимума). Этот отрицательный инотропный эффект обусловлен укорочением потенциала действия (рис. 19.10,5). Под действием симпатических нервов усиливаются сокращения как предсердий, так и желудочков (положительный инотропный эффект). Наклон восходящего участка кривой сокращения становится круче, интервал от начала сокращения уменьшается, и скорость расслабления увеличивается. В то же время форма кривой потенциала действия изменяется весьма незначительно (рис. 19.10, Я).

Дромотропия. В норме сердечные нервы влияют на проведение возбуждения только в области АВ–узла (рис. 19.12). Симпатические нервы стимулируют атриовентрикулярное проведение и тем самым вызывают сокращение интервала между

Рис. 19.12. Измерение времени проведения (т.е. интервала между нанесением раздражения и возбуждением участка под электродом) на препарате изолированного предсердия кролика. АВ–атриовентрикулярный узел; Г–пучок Гиса, УКС устье коронарного синуса. В нижней части рисунка приведены кривые зависимости времени проведения от расстояния между раздражающим и регистрирующим электродами в контроле и при действии ацетилхолина и норадреналина. Видно, что медиаторы вегетативных нервов влияют только на время атриовентрикулярного проведения–увеличение времени проведения соответствует снижению скорости проведения, и наоборот [по Hoffman В. F. et al. Circul Res., 7, 11 (1959)]

 

сокращениями предсердий и желудочков (положительный дромотропный эффект). Под действием же блуждающих нервов, особенно левого, атриовентрикулярная задержка увеличивается вплоть до полной преходящей атриовентрикулярной блокады (отрицательный дромотропный эффект). Такие влияния вегетативных нервов и их медиаторов объясняются особыми свойствами клеток АВ–узла. Как уже говорилось, клетки АВ–узла по своим свойствам весьма сходны с клетками СА–узла: в них нет быстрого натриевого тока, поэтому крутизна нарастания ПД, а соответственно и скорость распространения возбуждения сравнительно низки. Из рис. 19.10,Б видно, что блуждающие нервы еще больше снижают крутизну нарастания ПД, а симпатические нервы, напротив, повышают ее, что соответствующим образом отражается на скорости проведения в АВ–узле (рис. 19.12).

Батмотропия. Батмотропией называют влияние на возбудимость ткани, выражающееся в снижении или повышении порога раздражения. Убедительных данных, свидетельствующих о батмотропном влиянии медиаторов вегетативных нервов на сердце, не получено. Твердо установлено то, что симпатические нервы повышают возбудимость в случае, если она была снижена (потенциал покоя уменьшен). Понятие «батмотропный эффект» внесло не столько ясность, сколько путаницу, поэтому от него следует отказаться.

Механизм действия медиаторов. Считается, что в основе действия блуждающих нервов и их медиатора ацетилхолина лежит прежде всего повышение проницаемости возбудимых мембран для калия. В результате такого влияния мембранный потенциал стремится достичь равновесного потенциала для калия, что препятствует деполяризации. Этот эффект проявляется и в запаздывании медленной диастолической деполяризации в СА–узле (см. выше), и в укорочении потенциала действия миокарда предсердий, сопровождающемся ослаблением сокращений. Уменьшение крутизны нарастания потенциалов действия в АВ–узле, очевидно, также связано с этим эффектом, так как усиленный выход калия противодействует медленному входящему току кальция.

Обсуждается также возможность прямого ингибирующего действия ацетилхолина на медленный вход Са2+ (т.е. снижения кальциевой проницаемости) в клетках предсердий. Что же касается желудочков, то в них эффект ацетилхолина связан преимущественно с блокадой симпатического влияния, т. е. выделения норадреналина из окончаний симпатических нервов [30]. По современным представлениям, подавление симпатического влияния ацетилхолином происходит на внутриклеточном уровне: ацетилхолин блокирует активацию сАМР–зависимых реакций катехоламинами.

Относительно действия симпатических нервов и их медиаторов к настоящему времени получены убедительные экспериментальные данные о том, что они усиливают медленный входящий кальциевый ток (т. е. повышают кальциевую проницаемость). При этом сила сокращений увеличивается, поскольку возрастает эффективность электромеханического сопряжения. Влияние катехоламинов на АВ–узел по вышеизложенным соображениям также, очевидно, обусловлено усилением медленного входящего кальциевого тока. Что касается ускорения расслабления сердечной мышцы, сопровождающего положительный инотропный эффект, то его связывают со стимуляцией поступления Са2+ во внутриклеточные депо. Для положительного хронотропного эффекта симпатических нервов удовлетворительного объяснения пока нет: в СА–узле он связан, возможно, с усилением медленного кальциевого тока, но в волокнах Пуркинье более вероятно влияние на особый активируемый гиперполяризацией пейсмекерный ток [16, 20].

Фармакологические механизмы действия медиаторов на сердце. Считается, что действие медиаторов вегетативной нервной системы включает их связывание с определенными молекулярными структурами эффекторных клеток (эти структуры, как и чувствительные клетки, называют рецепторами). Влияние на сердце норадреналина и адреналина опосредовано возбуждением так называемых b–рецепторов. Эффекты симпатических нервов и их медиаторов выключаются b–адреноблокаторами, например дихлоризопротеренолом и неталидом. Антагонистом парасимпатических эффектов ацетилхолина в сердце, как и в других органах, служит алкалоид из белладонны атропин.

Афферентные нервы сердца. Сердце иннервируется не только эфферентными, но и большим количеством афферентных волокон, идущих в составе блуждающих и симпатических нервов. Большая часть афферентных путей, принадлежащих блуждающим нервам, представляет собой миелинизированные волокна с чувствительными окончаниями в предсердиях и левом желудочке. При регистрации активности одиночных предсердных волокон были выделены два типа механорецепторов: В–рецепторы, отвечающие на пассивное растяжение, и Арецепторы, реагирующие на активное напряжение.

Наряду с этими миелинизированными волокнами от специализированных рецепторов, существует еще одна большая группа чувствительных нервов, отходящих от свободных окончаний густого субэндокардиального сплетения безмякотных волокон. Эта группа афферентных путей идет в составе симпатических нервов. Полагают, что именно эти волокна отвечают за резкие боли с сегментарной иррадиацией, наблюдающиеся при ишемической болезни сердца (стенокардии и инфаркте миокарда).

Влияние ионного состава среды на функцию сердца.

                                                    

Из всех характеристик внеклеточной жидкости, влияющих на работу сердца, наибольший эффект оказывает концентрация ионов K+. При повышении содержания K+ в наружной среде наблюдаются: 1) снижение потенциала покоя вследствие уменьшения градиента концентрации К+; 2) увеличение проницаемости возбудимых мембран для K+ (как при действии ацетилхолина на миокард предсердий). Увеличение концентрации K+ вдвое, т.е. до 8 ммоль/л (при норме 4 ммоль/л), приводит к незначительной деполяризации, сопровождающейся повышением возбудимости и скорости проведения, а также к подавлению гетеротопных очагов возбуждения. При значительном возрастании концентрации K+ (выше 8 ммоль/л) возбудимость, скорость проведения и длительность потенциала действия падают, в результате чего уменьшается сократимость и СА–узел фактически перестает функционировать как водитель ритма. Снижение же внеклеточной концентрации K+ (ниже 4 ммоль/л) приводит главным образом к повышению активности пейсмекера, при этом активируются также гетеротопные очаги возбуждения, что может сопровождаться нарушениями ритма.

Снижение возбудимости под действием растворов с высокой концентрацией K+ (кардиоплегических растворов)

используют в хирургии сердца, чтобы вызвать его временную остановку; кровообращение в этих условиях поддерживается специальным насосом (аппаратом искусственного кровообращения). Изменения функций сердца при сдвигах в содержании K+ в крови, наступающих при большой физической нагрузке или при некоторых заболеваниях, могут существенно компенсироваться влиянием симпатических нервов.

В табл. 19.1 приведены важнейшие физические и химические факторы, влияющие на возбудимость и сократимость сердца (рассмотрены только преобладающие эффекты этих факторов).

Таблица 19.1. Влияние различных физических и химических факторов на электрическую и механическую активность сердца

 

 

Потенциал покоя

Потенциал действия

Скорость проведения

Крутизна нейсмекерного потенциала

Сила сокращений

амплитуда

длительность

крутизна

 

 

 

 

 

 

 

 

нарастания

 

 

 

 

 

 

Повышение частоты сокращений сердца

0

0

 

0

0

+

«Лестница» +

Снижение частоты сокращении сердца

0

0

+

0

0

 

Повышение температуры

0

0

 

0

0(+)

+

Снижение температуры

0→–

0→–

+

0→–

+

Ацидоз

0

0

+

 

 

 

 

Алкалоз

0

0

(–)

(+)

(+)

+

+

Недостаток O2

+ → –

Повышение Ко+

(+)––

Снижение Ко+

0→–

0→–

+→–

0

0

0(+)

+

Повышение [Са2+]

0→ +

0

0→ –

0→+

0

+

+

Снижение [Са2+]

0→–

0

0→ +

0→–

0

(+)

Норадреналин (адреналин)

0

0→ +

(+)       

+ в АВ–узле

+ в АВ–узле

+

+

Ацетилхолин (в предсердиях)

(+)

0

– в АВ–узле

– в АВ–узле

 

 

 «+»–усиление; «—»–торможение; (0) – отсутствие эффекта; ( )–слабый эффект; «→» изменение знака эффекта при усилении влияния

 

19.3. Электрокардиография

При возбуждении и реполяризации сердца возникает электрическое поле, которое можно зарегистрировать на поверхности тела. При этом между различными точками тела создается разность потенциалов, изменяющаяся в соответствии с колебаниями величины и направления этого электрического поля. Кривая изменений этой разности

 

Рис. 19.13. Нормальная ЭКГ человека, полученная путем биполярного отведения от поверхности тела в направлении длинной оси сердца

потенциалов во времени называется электрокардиограммой (ЭКГ). Таким образом, ЭКГ отражает возбуждение сердца, но не его сокращение.

Поскольку амплитуда потенциалов, непосредственно записываемых с поверхности тела, может быть меньше 1 мВ, во всех имеющихся в продаже электрокардиографах вмонтированы электронные усилители. Сигнал поступает на вход усилителя через высокочастотные емкостные фильтры с нижней полосой пропускания около 0,1 Гц, что соответствует постоянной времени 2 с. Благодаря этому на кривой ЭКГ не отражаются помехи в виде постоянных составляющих и медленных изменений потенциалов в области металлических электродов. Все электрокардиографы имеют блок калибровки: калибровочный сигнал величиной 1 мВ должен вызывать отклонение пера на 1 см.

Форма кривой ЭКГ и обозначение ее компонентов.

На рис. 19.13 представлена нормальная ЭКГ, зарегистрированная при помощи электродов, наложенных на правую руку и левую ногу. На ней видны как положительные, так и отрицательные колебания (зубцы), обозначаемые латинскими буквами от Р до Т. Любые положительные зубцы QRS–комплекса обозначают как R–зубцы; что же касается отрицательных зубцов этого комплекса, то, если такой зубец предшествует R–зубцу, он называется Q–зубцом, а если следует за ним – S–зубцом. Р– и Т–зубцы могут быть как положительными, так и отрицательными. Расстояние между двумя зубцами называют сегментом (например, сегмент PQ–промежуток между концом зубца Р и началом комплекса QRS). Термином интервал обозначают совокупность зубца и сегмента (интервал PQ равен расстоянию между началом зубца Р и началом комплекса QRS). Интервал RR, соответствующий расстоянию между вершинами соседних R–зубцов, равен длительности одного сердечного цикла и обратно пропорционален частоте сокращений сердца (60/инт. RR (с) = уд./мин).

Соотношение между ЭКГ и процессом возбуждения сердца. Прежде чем разбирать происхождение ЭКГ, следует в общих чертах рассмотреть значение ее зубцов. На кривой ЭКГ можно выделить предсердный и желудочковый комплексы. Предсердный комплекс начинается с зубца Р, соответствующего распространению возбуждения по обоим предсердиям. Далее следует сегмент PQ, в течение которого все отделы предсердий охвачены возбуждением. Реполяризация предсердий совпадает с началом желудочкового комплекса–участка кривой от начала зубца Q до конца зубца Т. QRS–комплекс отражает распространение возбуждения по желудочкам, а зубец Т–их реполяризацию. Сегмент ST, подобно сегменту PQ предсердного комплекса, соответствует возбужденному состоянию всех отделов желудочков. В некоторых случаях после зубца Т записывается зубец U; возможно, этот зубец отражает реполяризацию конечных ветвей проводящей системы.

Нормальная ЭКГ. Интервал PQ, соответствующий времени от начала возбуждения предсердий до начала возбуждения желудочков, в норме должен быть короче 0,2 с. Увеличение этого интервала указывает на замедление проводимости в атриовентрикулярном узле или в пучке Гиса. Уширение комплекса QRS (более 0,12 с) служит признаком нарушения внутрижелудочкового проведения. Длительность интервала QT зависит от частоты сокращений сердца. Так, при ускорении ритма сердца от 40 до 180 интервал QT укорачивается от 0,5 до 0,2 с. Значения амплитуды зубцов ЭКГ примерно следующие:

Р < 0,25 мВ; Q < 1/4 R; R + S > 0,6 мВ; Т = от 1/6 до 2/3R.

Происхождение ЭКГ

Для понимания генеза ЭКГ необходимо знать следующие факты (здесь мы ограничимся их перечислением, а в дальнейшем по мере необходимости раскроем полнее):

– общее электрическое поле сердца образуется в результате сложения полей многочисленных отдельных волокон сердца;

– каждое возбужденное волокно представляет собой диполь, обладающий элементарным дипольным вектором определенной величины и направления;

– интегральный вектор в каждый момент процесса возбуждения представляет собой результирующую отдельных векторов;

– величина потенциала, измеряемого в точке, удаленной от источника, зависит главным образом от величины интегрального вектора и от угла между направлением этого вектора и осью отведения.

Волна возбуждения и длина свободного пробега.

Специализированная система очень быстро проводит возбуждение к различным отделам желудочков. Вследствие этого размер участка миокарда, активирующегося одним волокном Пуркинье (по этому

Рис. 19.14. Кривая волны возбуждения в миокарде. Для построения такой кривой значения внутриклеточных потенциалов нанесены на график как функция расстояния. Под кривой в виде цилиндрических фигур изображены сегменты миокарда, соответствующие длине свободного пробега, и распространение по ним волны возбуждения во время четырех различных фаз электрической систолы сердца. Фронт волны возбуждения генерирует вектор деполяризации. Во время фазы восстановления возникает вектор реполяризации, направленный в противоположную сторону. Внизу: принцип сложения векторов: из четырех векторов строятся два результирующих, а из них–один так называемый интегральный вектор.


участку волна возбуждения движется непрерывно), относительно невелик (около 1 см). Это расстояние называется длиной свободного пробега. Что же касается длины волны возбуждения, то ее можно рассчитать, умножив скорость проведения (около 1 м/с) на продолжительность возбуждения (около 0,3 с); она равна 0,3 м. Из этого следует, что в каждый момент цикла возбуждения в сердце могут существовать лишь небольшие участки волны возбуждения (рис. 19.14).

Волокно миокарда как диполь. По мере того как волна возбуждения распространяется по волокну миокарда на участке, соответствующем длине свободного пробега, создается градиент напряжения (dV/dx), величина которого в каждый момент зависит от фазы возбуждения (рис. 19.14). В области фронта волны имеется крутой градиент величиной 120 мВ (соответствующей амплитуде потенциала действия) на участке длиной около 2 мм (градиент напряжения = 600 мВ/см). Напротив, во время фазы реполяризации возникают гораздо меньшие градиенты напряжения, направленные в обратную сторону. В первом приближении волокно миокарда ведет себя в физическом отношении как переменный диполь, характеризующийся определенной величиной и направлением. Эти параметры изображаются стрелкой (вектор). По определению дипольный вектор направлен от минуса к плюсу, т. е. от возбужденного участка к невозбужденному (возбужденный участок снаружи заряжен отрицательно по отношению к невозбужденному). Дипольный вектор переднего фронта волны возбуждения можно назвать вектором деполяризации, а вектор ее заднего фронта, направленный в обратную сторону,–вектором реполяризации.

Интегральный вектор. В каждый момент в процессе возбуждения сердца отдельные векторы суммируются и образуют интегральный вектор. Его можно построить так же, как результирующую двух сил по правилу параллелограмма; при этом, исходя из двух векторов, строят третий (рис. 19.14, внизу). Внутри стенки сердца большая часть векторов (по подсчетам до 90%) действует во взаимопротивоположных направлениях и нейтрализует друг друга.

Связь интегрального вектора с циклом возбуждения. На рис. 19.15 показаны мгновенные значения интегральных векторов для ряда последовательных стадий возбуждения сердца. По предсердиям в момент зубца Р возбуждение распространяется преимущественно сверху вниз; это означает, что большая часть отдельных векторов деполяризации направлена к верхушке сердца и интегральный вектор в этот момент также ориентирован в этом направлении. Во время возбуждения всех отделов предсердий

 

Рис. 19.15. Соотношение различных участков ЭКГ с фазами возбуждения сердца. Возбужденные участки показаны красным, участки в состоянии реполяризации розовым. Черные стрелки указывают направление и относительную величину интегрального вектора в отдельные моменты цикла возбуждения. Кривые, расположенные между изображениями ЭКГ и сердца,–это петли, описываемые концом сердечного вектора во фронтальной проекции (фронтальная векторкардиограмма). На каждом из рисунков приведены участки петли, соответствующие интервалу времени от начала возбуждения до той фазы, которая изображена на данном рисунке

 

разность потенциалов временно исчезает, так как потенциалы действия всех предсердных клеток находятся в стадии плато (рис. 19.14). В это время возбуждение распространяется по проводящей системе желудочков, однако общее количество возбуждающихся клеток при этом невелико и существенной разности потенциалов не возникает (сегмент PQ). Лишь при переходе возбуждения на рабочий миокард желудочков вновь появляются значительные градиенты напряжения. Возбуждение желудочков начинается с деполяризации левой поверхности межжелудочковой перегородки; при этом возникает интегральный вектор, направленный к основанию сердца (начало комплекса QRS). Затем вектор быстро меняет направление на противоположное (к верхушке), и формируется самый крупный зубец комплекса QRS. Это соответствует распространению возбуждения через стенку желудочков от эндокарда к эпикарду. В последнюю очередь возбуждается участок правого желудочка в области основания легочного ствола; интегральный вектор в этот момент будет направлен вправо и вверх (конец комплекса QRS). Распространение возбуждения по желудочкам (комплекс QRS) совпадает с реполяризацией предсердий. Когда желудочки полностью охвачены возбуждением (сегмент ST), разность потенциалов между различными их отделами временно исчезает, как и при возбуждении предсердий (сегмент PQ). Затем следует фаза реполяризации желудочков (зубец Т). В течение всей этой фазы направление центрального вектора почти не изменяется: он ориентирован влево. Если бы реполяризация желудочков распространялась в том же направлении и с такой же скоростью, что и деполяризация, то векторы этих процессов должны были быть направлены в противоположные стороны. Однако этого не происходит по следующим причинам. Во–первых, реполяризация протекает значительно медленнее, чем деполяризация; во–вторых, скорость реполяризации в разных отделах сердца различна: в области верхушки реполяризация наступает раньше, чем у основания, а в субэпикардиальных слоях–раньше, чем в субэндокардиальных (рис. 19.15).

Величина и направление зубцов ЭКГ. Для того чтобы разобраться в соотношении между ориентацией вектора сердца и полярностью зубцов ЭКГ, необходимо рассмотреть электрическое поле вокруг диполя, помещенного в однородную проводящую среду (рис. 19.16). Точки этого поля, обладающие одинаковыми потенциалами, образуют так называемые изопогенциальные линии. Из рис. 19.16, А и Б видно, что разность потенциалов (вольтаж) между точками А и Б зависит прежде всего от угла между осью диполя и осью отведения (прямой АБ) и равна проекции интегрального вектора на ось отведения. Если направление отведения совпадает с направлением интегрального вектора, величина регистрируемой разности потенциалов максимальна; если же эти направления взаимно перпендикулярны, разность потенциалов равна 0. В принципе это правило можно перенести и на ЭКГ человека (рис. 19.16, В), хотя на практике в этом случае картина значительно сложнее. Это связано с тем, что, во–первых, тело человека не является электрически однородной средой, во–вторых, сердце расположено не в центре сферического проводника. В связи с этим электрическое поле сердца на поверхности тела искажается.

Векторная петля и векторкардиография (ВКГ).

Если принять, что во время одиночного цикла возбуждения сердца интегральный вектор исходит из одной точки, то конец этого вектора будет описывать в пространстве особую фигуру – векторную петлю. На рис. 19.15 показано, как образуется эта петля в проекции на фронтальную плоскость при одиночном возбуждении. Векторную петлю можно выводить непосредственно на экран осциллоскопа при помощи векторкардиографии. Принцип этой методики представлен на рис. 19.17, где в качестве примера изображена проекция интегрального вектора на фронтальную плоскость. Горизонтально расположенные электроды соединяются через усилитель с пластинами горизонтального отклонения осциллографа и смещают его луч по оси х. Сигнал с другой – вертикальной – пары электродов подается на пластины вертикального отклонения и смещает луч по оси у. В результате луч смещается от центра экрана на расстояние, определяемое величинами сигналов по осям х и у, и занимает положение, соответствующее величине и направлению

Рис. 19.16. А, Б. Биполярная запись электрического поля диполя в гомогенной среде с границами в виде окружности. В точках пересечения изопотенциальных линий с окружностью обозначены их относительные потенциалы. Поворот диполя (6) при неизменном положении электродов приводит к снижению регистрируемого вольтажа от 3 до 2 условных единиц. В. Проекция электрического поля, создаваемого диполем сердца в некий момент времени, на переднюю стенку грудной клетки. Точки R, L и F лежат в углах треугольника Эйнтховена

 

 

Рис. 19.17. А. Схема записи векторкардиограммы: парные регистрирующие электроды через предусилители соединены с одноименными отклоняющими пластинами осциллографа. Проекция поля интегрального вектора на ось каждой пары пластин вызывает отклонение электронного луча от центра экрана. Величина и направление этого отклонения соответствуют значению интегрального вектора в данный момент времени (красная стрелка). Б. Трехмерная векторная петля и ее проекции в трех плоскостях тела

интегрального вектора (красная стрелка). Поскольку точно так же отображаются на экране векторы, соответствующие любому моменту цикла возбуждения, луч осциллографа в течение этого цикла описывает кривую, соединяющую концы этих векторов,–векторную петлю. Если расположить электроды в сагиттальной или горизонтальной плоскости, можно получить соответствующие проекции векторной петли. Исходя из любых двух проекций, можно реконструировать трехмерную векторную петлю (рис. 19.17, внизу).

Отведения ЭКГ

Различные формы кривой ЭКГ, получаемые при использовании стандартных отведении от конечностей и грудной клетки, представляют собой проекции трехмерной векторной петли на оси этих отведении. Таким образом, векторная петля содержит столько же информации, сколько все эти кривые вместе взятые. Однако на практике предпочитают использовать привычную запись ЭКГ, отражающую изменения разности потенциалов во времени. Это связано не только с тем, что приборы, позволяющие осуществлять прямую регистрацию от двух пар электродов, менее распространены, но также с тем, что некоторые диагностически важные нарушения возбуждения сердца, в частности аритмии, легче обнаружить, исходя из ЭКГ, чем из ВКГ. Недостатком ЭКГ по сравнению с ВКГ является то, что для получения полной информации необходимо сравнивать несколько отведении.

Различают биполярные и униполярные отведения. Для получения униполярного отведения накладывают активный электрод на какую–либо точку поверхности тела и регистрируют изменение потенциала под этим электродом по отношению к так называемому референтному электроду (рис. 19.18). Можно считать, что референтный электрод помещен в «нулевой точке» диполя, т. е. между положительным и отрицательным полюсами. Рассмотрим отведения, наиболее часто используемые в клинике.

Отведения от конечностей

Биполярные: стандартные отведения Эйнтховена (I, II, III).

Униполярные: усиленные отведения по Гольдбергеру (aVR, aVL, aVF).

Грудные отведения

Биполярные: отведения по Нэбу (D, А, I), образующие так называемый малый грудной треугольник (на рис. 19.18 не показан).

Униполярные: прекардиальные отведения по Вильсону (V1–V6).

Треугольник Эйнтховена. При биполярных отведениях по Эйнтховену конечности играют роль проводников, поэтому точки, от которых отводят потенциалы, фактически расположены в местах соединения конечностей с туловищем. Таких точек три: они почти совпадают с вершинами равностороннего треугольника, стороны которого представляют собой оси отведения. Из рис. 19.19 видно, что амплитуда зубцов ЭКГ в трех стандартных отведениях отражает величину проекции фронтальной векторной петли на оси этих отведении (на рисунке приведены временные соотношения, характерные для нормальной ЭКГ).

Ось вектора QRS и ее направление. Из рис. 19.15 и 19.19 видно, что векторная петля во фронтальной

               

Рис. 19.18. Наиболее распространенные отведения ЭКГ. На схемах так называемых униполярных отведении (по Гольдбергеру или Вильсону) активные электроды изображены красным. Показан общий принцип расположения электродов (внизу слева) и точки наложения активных электродов (внизу в центре) для прекардиальных отведении по Вильсону. В правой части рисунка приведены типичные ЭКГ здорового человека

 

плоскости имеет вытянутую форму. Направление наибольшего по величине вектора (главного вектора) несколько неточно называют электрической осью сердца. При нормальном распространении возбуждения направление оси во фронтальной проекции и направление главной анатомической оси сердца совпадают, поэтому по отведениям от конечностей можно судить о расположении сердца. Для определения электрической оси сердца вычисляют угол между этой осью и горизонтальной линией. При нормальном положении оси он варьирует от 0° до + 90° (рис. 19.19). Если угол открыт кверху, то он записывается с отрицательным знаком. Существуют следующие варианты ориентации оси QRS: нормальное положение (0° < a < +90°), отклонение оси вправо (+90° < a < +180°), отклонение оси влево (—120° < а < –0°).


Для определения оси сердца по стандартным отведениям (рис. 19.19, нижняя часть) достаточно двух таких отведении, так как исходя из двух отведении можно построить третье. Для каждого момента цикла возбуждения справедлива зависимость: величина отклонения в отведении II равна величине отклонения в отведении I + величина отклонения в отведении III (отклонение книзу записывается с отрицательным знаком).

Электрическая ось сердца примерно совпадает с анатомической лишь в том случае, если распространение возбуждения не нарушено. В противном же случае направления этих осей могут быть совершенно различными. При таких нарушениях нельзя судить о положении сердца на основании петли QRS, однако направление этой петли вместе с другими признаками служит важным диагностическим признаком для выявления нарушений возбуждения сердца.

Униполярные отведения от конечностей по Гольдбергеру. При этих отведениях регистрируют разность потенциалов между электродом, наложенным на конечность, и референтным электродом, представляющим собой объединенный электрод от двух других конечностей (см. рис. 19.18). Ось отведения aVR представляет собой биссектрису угла между стандартными отведениями I и II (рис. 19.20, А). Оси отведении aVL и aVF являются биссектрисами двух других углов треугольника Эйнтховена. Обозначения этих отведении происходят от терминологии, не имеющей в настоящее время большой популярности: V произошло от слова "voltage" (вольтаж) (по отношению к референтному электроду), a L, R и F обозначают соответственно левую (Left) и правую (Right) руку и левую ногу (Foot); "а"–это первая буква слова "augmented" (усиленный), так как при отведениях по Гольдбергеру регистрируются увеличенные по амплитуде потенциалы. На рис. 19.20,5 изображена шестиосевая система, для получения которой оси биполярных и униполярных отведении расположили так, чтобы все они пересекались в исходной точке векторных петель (при этом направления осей не были изменены). Соседние оси пересекаются под углом 30°. Эта шестиосевая система отведении дает возможность получить столь же полную информацию, как и при анализе фронтальной векторкардиограммы.

Униполярные прекардиальные отведения. Отведения от конечностей, которые мы только что рассмотрели, отражают в основном проекции векторной петли на фронтальную плоскость.

Рис. 19.19. А. Схема треугольника Эйнтховена. Точки отведения на конечностях лежат в вершинах равностороннего треугольника, стороны которого соответствуют осям трех стандартных отведении. Изображены проекции фронтальной векторной петли на эти оси. Типичные ЭКГ в серых прямоугольниках отражают относительную величину зубцов в разных отведениях. Для более точного анализа векторной петли необходим масштаб времени. Б и В. Направление и относительная величина наибольшего зубца комплекса QRS при отклонении оси сердца вправо и влево соответственно. Если проекция вектора направлена в ту же сторону, что и стрелки на схеме отведении, регистрируется положительный зубец

Рис. 19.20. А. Оси, на которые проецируется фронтальная векторная петля при униполярных отведениях от конечностей (по Гольдбергеру). Б. Совокупность осей униполярных (по Гольдбергеру) и биполярных (по Эйнтховену) отведении от конечностей. Отведение aVR является исключением из общего правила полярности отведении. В. Поперечный разрез грудной клетки на уровне сердца с изображением осей, на которые проецируется горизонтальная векторная петля при прекардиальных отведениях по Вильсону. Приведены ЭКГ в трех отведениях (V1, V3 и V6)

 

Что же касается униполярных прекардиальных отведении по Вильсону, то по ним можно судить главным образом о проекции интегрального вектора на горизонтальную плоскость. При снятии этих отведении референтный электрод получают путем объединения трех отведении от конечностей, а активный помещают на определенные участки грудной клетки в области сердца (рис. 19.18). На рис. 19.20, В изображены оси отведении, на которые проецируется вектор при различных расположениях грудного электрода. Положительное отклонение регистрируется, когда проекция моментного вектора на соответствующую ось направлена к активному электроду; в противном случае отклонение будет отрицательным. Следовательно, начало отрицательного отклонения соответствует тому моменту, когда вектор меняет свое направление: до этого момента он был направлен к активному электроду, после–от него. Этот момент имеет особое диагностическое значение, так как по нему можно судить о замедлении проведения возбуждения (нарушенной проводимости) в определенных участках сердца.

Поражения сердца. Существуют электрокардиографические симптомы недостаточности коронарного кровообращения, снабжения сердца кислородом, воспалительных заболеваний сердца, поражений сердца при общих патологических состояниях и травмах, при врожденных или приобретенных пороках сердца и т.п. Инфаркт миокарда (полное нарушение кровоснабжения какого–либо участка сердца). По ЭКГ можно судить о локализации, обширности и динамике инфаркта.

Следует, однако, помнить, что отклонения ЭКГ от нормы, за исключением некоторых типичных признаков нарушения возбуждения и проведения, дают возможность только предположить наличие патологии. О том, является ли ЭКГ нормальной или патологической, часто можно судить лишь на основании общей клинической картины, и окончательное решение о причине тех или иных нарушений ни в коем случае нельзя принимать исходя только из ЭКГ.

Использование ЭКГ в диагностике

ЭКГ имеет чрезвычайно важное значение в клинической кардиологии, так как это исследование позволяет распознать нарушения возбуждения сердца, являющиеся причиной или следствием его поражения. По обычным кривым ЭКГ врач может судить о следующих проявлениях деятельности сердца и его патологических состояниях.

Частота сокращений сердца. Можно определить нормальную частоту (60 90 уд. в 1 мин в покое), тахикардию (более 90 уд. в 1 мин) или брадикардию (менее 60 уд. в 1 мин).

Локализация очага возбуждения. Можно установить, расположен ли ведущий пейсмекер в синусном узле, предсердиях, АВ–узле, правом или левом желудочке.

Нарушения ритма сердца. ЭКГ дает возможность распознать различные виды аритмий (синусовая аритмия, наджелудочковые и желудочковые экстрасистолы, трепетание и фибрилляция) и выявить их источник.

Нарушения проведения. Можно определить степень и локализацию блокады или задержки проведения (например, при синоатриальной или атриовентрикулярной блокаде, блокаде правой или левой ножки пучка Гиса или их ветвей либо при комбинированных блокадах).

Направление электрической оси сердца. Направление электрической оси сердца отражает его анатомическое расположение, а при патологии указывает на нарушение распространения возбуждения (гипертрофия одного из отделов сердца, блокада ножки пучка Гиса и т. п.).

Влияние различных внешних факторов на сердце. На ЭКГ отражаются влияния вегетативных нервов, гормональные и обменные нарушения, сдвиги в концентрациях электролитов, действие ядов, лекарств (например, наперстянки) и т.д.

Некоторые патологические типы ЭКГ

Разберем на примере нескольких типичных кривых, как отражаются на ЭКГ нарушения ритма и проводимости. За исключением особо оговоренных случаев, везде будут представлены кривые, записанные при стандартном отведении II (см. рис. 19.13).

Синусный ритм. Для того чтобы иметь возможность судить о патологических изменениях, рассмотрим сначала нормальную ЭКГ (рис. 19.21, А). Пейсмекер расположен в СА–узле; QRS–комплексу предшествует нормальный зубец Р. На рис. 19.21, А над ЭКГ изображена схема возбуждения сердца, оказавшаяся довольно удобной для описания нарушений ритма или проведения. В направлении сверху вниз на схеме изображена последовательность охвата возбуждением сердца, а по горизонтальной оси отложена длительность абсолютной рефрактерности предсердий и желудочков.

Ритмы, возникающие в атриовентрикулярном соединении (рис. 19.21, Б). При таких ритмах импульсы из источника, расположенного в области АВ–соединения (в АВ–узле и непосредственно прилегающих к нему отделах проводящей системы), поступают как в желудочки, так и в предсердия. При этом импульсы могут проникать и в СА–узел. Поскольку возбуждение распространяется по предсердиям ретроградно, зубец Р в таких случаях отрицателен, а комплекс QRS не изменен, так как внутрижелудочковое проведение не нарушено. В зависимости от временных соотношений между ретроградным возбуждением предсердий и возбуждением желудочков отрицательный зубец Р может предшествовать комплексу QRS (рис. 19.21,Б 1),

 

Рис. 19.21. А. Схема нормального распространения возбуждения по сердцу. Сверху вниз изображена последовательность охвата возбуждением различных отделов: временные интервалы отложены по горизонтальной оси. Абсолютные периоды рефрактерности для предсердий (П) и желудочков (Ж) указаны по оси абсцисс. САУ–импульсы из СА–узла. Б. (1–3). Импульс возникает в различных отделах атриовентрикулярного соединения (АВУ); предсердия возбуждаются ретроградно (зубец Р отрицателен); 2– возбуждение предсердий совпадает с комплексом QRS. В. Если возбуждение возникает в желудочках, то оно распространяется медленно и комплекс QRS резко деформирован. При этом возможно обратное проведение возбуждения в предсердия

сливаться с ним (рис. 19.21, Б, 2) или следовать за ним (рис. 19.21, Б, 3). В этих случаях говорят соответственно о ритме из верхнего, среднего или нижнего отдела АВ–соединения, хотя эти термины не совсем точны.

Ритмы, возникающие в желудочке (рис. 19.21, Я). Движение возбуждения из эктопического внутрижелудочкового очага может идти разными путями в зависимости от местонахождения этого очага и от того, в какой момент и где именно возбуждение проникает в проводящую систему. Поскольку скорость проведения в миокарде меньше, чем в проводящей системе, длительность распространения возбуждения в таких случаях обычно увеличена. Ненормальное проведение импульса приводит к деформации комплекса QRS.

Экстрасистолы. Внеочередные сокращения, временно нарушающие ритм сердца, называются экстрасистолами. Они могут быть по происхождению как наджелудочковыми (из СА–узла, предсердий или АВ–соединения), так и желудочковыми. В простейшем случае экстрасистолы возникают в промежутке между двумя нормальными сокращениями и не влияют на них; такие экстрасистолы называют интерполированными (рис. 19.22, А). Интерполированные экстрасистолы встречаются крайне редко, так как они могут возникать лишь при достаточно медленном исходном ритме, когда интервал между сокращениями длительнее одиночного цикла возбуждения. Такие экстрасистолы всегда исходят из желудочков, поскольку возбуждение из желудочкового очага не может распространяться по проводящей системе, находящейся в фазе рефрактерности предыдущего цикла, переходить на предсердия и нарушать синусный ритм. Если желудочковые экстрасистолы возникают на фоне более высокой частоты сокращений сердца, то они, как правило, сопровождаются так называемыми компенсаторными паузами. Это связано с тем, что очередной импульс из СА–узла поступает к желудочкам, когда они еще находятся в фазе абсолютной рефрактерности экстрасистолического возбуждения, из–за чего импульс не может их активировать (рис. 19.22, Б). К моменту прихода следующего импульса желудочки уже находятся в состоянии покоя, поэтому первое постэкстрасистолическое сокращение следует в нормальном ритме. Промежуток времени между последним нормальным сокращением и первым постэкстрасистолическим равен двум интервалам RR, однако, когда наджелудочковые или желудочковые экстрасистолы проникают в СА–узел, наблюдается сдвиг по фазе исходного ритма (рис. 19.22, В). Этот сдвиг связан с тем, что возбуждение, ретроградно прошедшее в СА–узел, прерывает диастолическую деполяризацию в его клетках, вызывая новый импульс.

Нарушения атриовентрикулярного проведения. На рис. 19.22, Г представлена ЭКГ при полной атриивентрикулярной блокаде. При этом нарушении предсердия и желудочки сокращаются независимо друг от друга (разд. 19.2)–предсердия в синусном ритме, а желудочки в более медленном ритме пейсмекера третьего порядка. Если водитель ритма желудочков при этом локализован в пучке Гиса, то распространение возбуждения по нему не нарушается и форма QRS–комплекса не искажается. При неполной атриовентрикулярной блокаде импульсы от предсердий периодически не проводятся на желудочки; например, к желудочкам может проходить только каждый второй (блокада 2:1) или каждый третий (блокада 3:1) импульс из СА–узла. В некоторых случаях интервал PQ постепенно увеличивается, и наконец наблюдается выпадение QRS–комплекса; затем вся эта последовательность повторяется (периоды Венкебаха). Подобные нарушения атриовентрикулярной проводимости легко могут быть получены в эксперименте при воздействиях, снижающих потенциал покоя (увеличение содержания K+, гипоксия и т.д.).

Изменения сегмента ST и зубца Т. При повреждениях миокарда, связанных с гипоксией или другими факторами, в одиночных волокнах миокарда прежде всего снижается уровень плато потенциала действия и лишь затем наступает существенное уменьшение потенциала покоя. На ЭКГ эти изменения проявляются во время фазы реполяризации: зубец Т уплощается или становится отрицательным, а сегмент ST смещается вверх или вниз от изолинии. В случае прекращения кровотока в одной из коронарных артерий (инфаркт миокарда) формируется участок омертвевшей ткани, о расположении которого можно судить, анализируя одновременно несколько отведении (в частности, грудных). Следует помнить, что ЭКГ при инфаркте претерпевает значительные изменения во времени (рис. 19.22, Д). Для ранней стадии инфаркта характерен «монофазный» желудочковый комплекс, обусловленный подъемом сегмента ST. После того как пораженный участок отграничивается

 

Рис. 19.22. Некоторые типичные нарушения ЭКГ. А. Интерполированные желудочковые экстрасистолы; разная конфигурация экстрасистолических комплексов указывает на то, что они исходят из различных эктопических очагов в желудочках. Обратного проведения в предсердия нет. Б. Желудочковая экстрасистола с полной компенсаторной паузой; С–С–нормальный межимпульсный интервал. В. Наджелудочковая экстрасистола из области атриовентрикулярного соединения с неполной компенсаторной паузой. Г. Полная атриовентрикулярная блокада (блокада III степени). ,Д. Динамика ЭКГ при инфаркте миокарда. В качестве примера приведено отведение V3 по Вильсону при инфаркте передней стенки. 0–нормальная ЭКГ до инфаркта. 1 –острая стадия инфаркта (первые часы); 2–подострая стадия (от нескольких часов до нескольких суток); 3–поздняя стадия (от нескольких суток до нескольких недель);4–постинфарктные изменения (спустя месяцы и годы после инфаркта) от неповрежденной ткани, монофазный комплекс перестает регистрироваться.

Трепетание и мерцание (фибрилляция) предсердий.

Эти аритмии связаны с хаотическим распространением возбуждения по предсердиям, в результате которого происходит функциональная фрагментация этих отделов–одни участки сокращаются, а другие в это время находятся в состоянии расслабления. При трепетании предсердий на ЭКГ вместо зубца Р регистрируются так называемые волны трепетания, имеющие одинаковую пилообразную конфигурацию и следующие с частотой (220–350)/мин (рис. 19.23, А). Это состояние сопровождается неполной атриовентрикулярной блокадой (желудочковая проводящая система, обладающая длительным рефракторным периодом, не пропускает такие частые импульсы), поэтому на ЭКГ через одинаковые интервалы появляются неизмененные QRS–комплексы. При мерцании предсердий (рис. 19.23, Б) активность этих отделов регистрируется только в виде высокочастотных [(350–600)/мин] нерегулярных колебаний. Интервалы между QRS–комплексами при этом различны (абсолютная аритмия), однако, если других нарушений ритма и проводимости нет, конфигурация их не изменена. Существует ряд промежуточных состояний между трепетанием и мерцанием предсердий. Как правило, гемодинамика при этих нарушениях страдает незначительно, иногда такие больные даже не подозревают о существовании у них аритмии.

Трепетание и фибрилляция желудочков. Трепетание и фибрилляция желудочков чреваты гораздо более серьезными последствиями. При этих аритмиях возбуждение распространяется по желудочкам хаотически, и в результате страдают их наполнение и выброс крови. Это приводит к остановке

 

Рис. 19.23. ЭКГ при трепетании и фибрилляции (мерцании). А. Трепетание предсердий; волны трепетания, совпадающие с желудочковыми комплексами, изображены штриховыми линиями, к желудочкам проводится лишь каждая четвертая волна. Б. Аритмия желудочков при фибрилляции (мерцании) предсердий. В. Трепетание желудочков. Г. Фибрилляция желудочков. Д. Возникновение фибрилляции желудочков при нанесении электрического импульса (1000 мА) в уязвимый период. Е. Прекращение фибрилляции под действием импульса электрического тока большей величины (> 1 А)

кровообращения и потере сознания. Если в течение нескольких минут движение крови не восстанавливается, наступает смерть. При трепетании желудочков на ЭКГ регистрируются высокочастотные крупные волны (рис. 19.23, В), а при их фибрилляции–колебания различной формы, величины и частоты (рис. 19.23, .Г). Трепетание и фибрилляция желудочков

возникают при разных воздействиях на сердце–гипоксии, закупорке коронарной артерии (инфаркте), чрезмерном растяжении и охлаждении, передозировке лекарств, в том числе вызывающих наркоз, и т.п. Фибрилляция желудочков является самой частой причиной смерти при электротравме.

Причины трепетания и фибрилляции. Для раскрытия причин трепетания и фибрилляции наиболее важен вопрос о нарушении электрических процессов в миокарде. Существуют две основные точки зрения относительно механизмов этого нарушения: 1) гипотеза нарушения генерации возбуждения; 2) гипотеза нарушения проведения возбуждения. Согласно первой гипотезе, фибрилляция возникает в результате активности одного или нескольких эктопических очагов; эти очаги разряжаются в высоком ритме, возбуждают соответствующие отделы сердца и тем самым подавляют нормальный автоматизм и проведение. В соответствии со второй точкой зрения причиной фибрилляции служит обратное распространение возбуждения (reentry) [13]. При таком распространении в миокарде циркулируют замкнутые волны возбуждения. Для этого необходимы два условия. Во–первых, длина волны возбуждения (произведение скорости проведения на рефракторный период) должна быть в достаточной степени укорочена, чтобы в миокардиальной сети был возможен ее обратный вход. Это происходит либо при укорочении рефрактерного периода, либо при снижении скорости проведения, либо при соблюдении обоих этих условий. Во–вторых, должен существовать временный односторонний блок проведения, так как при этом волны возбуждения не будут сталкиваться и гасить одна другую (рис. 19.24).

В настоящее время считают, что оба механизма могут играть роль в генезе фибрилляции: эктопические очаги в ее возникновении, а круговое движение или обратное распространение волны возбуждения–в ее поддержании. Между трепетанием и фибрилляцией существует ряд переходных стадий, различающихся в зависимости от степени функциональной фрагментации миокарда (размеров очагов, возбуждающихся независимо друг от друга).

Уязвимый период. Как в эксперименте, так и в естественных условиях одиночный надпороговый электрический стимул может вызвать трепетание или фибрилляцию желудочков, если он попадает в так называемый уязвимый период. Этот период наблюдается во время фазы реполяризации и приблизительно совпадает с восходящим коленом зубца Т на ЭКГ (рис. 19.23, Д и 19.24). В уязвимый период одни клетки сердца находятся в состоянии абсолютной, а другие – относительной рефрактерности. Как указывалось выше (разд. 19.2), если на сердце наносить раздражение во время фазы относительной рефрактерности, то следующий рефрактерный период будет короче. Кроме того, как видно из рис. 19.24, в этот период может наблюдаться односторонняя блокада проведения. Благодаря этому создаются условия для обратного распространения возбуждения. Экстрасистолы, возникающие в уязвимый период, могут, подобно электрическому раздражению, привести к фибрилляции желудочков.

 

 

Рис. 19.24. Схема, поясняющая понятие уязвимого периода желудочков. Треугольники под кривой ЭКГ изображают разветвленные сети в миокарде. Во время уязвимого периода некий участок этой сети частично пребывает в состоянии рефрактерности, поэтому, когда в результате раздражения возникает волна возбуждения, она проводится только в одном направлении. Когда же этот участок выходит из состояния рефрактерности, становится возможным повторный вход в него волны возбуждения в обратном направлении (при условии что длина волны возбуждения не больше, чем длина самого этого участка). Если раздражение наносится раньше, то возбуждение не возникает вовсе (желудочки целиком пребывают в состоянии абсолютной рефрактерности), а если позже, то условия для обратного входа волны уже не создаются

Электрическая дефибрилляция. Электрическим током можно не только вызвать трепетание и фибрилляцию, но и при определенных условиях его применения прекратить эти аритмии. Для этого необходимо приложить одиночный короткий импульс тока силой в несколько ампер. При воздействии таким импульсом через широкие электроды, помещенные на неповрежденную поверхность грудной клетки, хаотические сокращения сердца обычно мгновенно прекращаются (рис. 19.23,–Е). Такая электрическая дефибрилляция служит самым надежным способом борьбы с грозными осложнениями – трепетанием и фибрилляцией желудочков.

Синхронизирующее действие электрического тока, приложенного к обширной поверхности, очевидно, обусловлено тем, что этот ток одновременно возбуждает множество участков миокарда, не пребывающих в состоянии рефрактерности. В результате циркулирующая волна застает эти участки в фазе рефрактерности, и дальнейшее ее проведение блокируется. Фибрилляция желудочков приводит к остановке кровообращения, сопровождающейся необратимыми повреждениями ряда органов (так, деятельность головного мозга можно восстановить не позже чем через 8–10 мин после прекращения работы сердца). В связи с этим, чтобы электрическая дефибрилляция была эффективной, необходимо предотвратить такие повреждения. Для этого производят закрытый массаж сердца, благодаря которому кровообращение в какой–то степени поддерживается, и искусственное дыхание «рот в рот». Этими приемами должен владеть любой студент–медик.

19.4. Механическая работа сердца

Огромное значение процессов возбуждения в сердце состоит в том, что они управляют его механической деятельностью. Именно возбуждение клеток миокарда вызывает их сокращение. Однако для того, чтобы кровь в результате чередований сокращения и расслабления сердца передвигалась в нужном направлении – от вен к артериям,–необходима согласованная работа клапанов. В сердце существует два вида клапанов, препятствующих обратному току крови.

Функция клапанов сердца

Клапаны расположены «на входе» и «на выходе» обоих желудочков сердца. Атриовентрикулярные клапаны (в левом желудочке – митральный клапан, а в правом–трехстворчатый) препятствуют обратному забросу (регургитации) крови в предсердия во время систолы желудочков. Аортальный и легочный клапаны, расположенные у основания крупных артериальных стволов, предупреждают

 

Рис. 19.25. Схема продольного среза правого сердца, показывающая механизмы деятельности клапанов и присасывающего эффекта смещения атриовентрикулярной перегородки. А. Диастола предсердий, систола желудочков; трехстворчатый клапан закрыт, легочный открыт. Б. Систола предсердий, диастола желудочков; трехстворчатый клапан открыт, легочный закрыт. На врезках вверху изображен легочный клапан (вид со стороны полости желудочка)

 

регургитацию крови в желудочки при диастоле (рис. 19.25).

Атриовентрикулярные клапаны образованы перепончатыми листками (створками), свешивающимися в желудочки наподобие воронки. Их свободные концы соединены тонкими сухожильными связками (нитями) с сосочковыми мышцами; это препятствует заворачиванию створок клапанов в предсердия во время систолы желудочков. Общая поверхность клапанов гораздо больше, чем площадь атриовентрикулярного отверстия, поэтому их края плотно прижимаются друг к другу. Благодаря такой особенности клапаны надежно смыкаются даже при изменениях объема желудочков. Аортальный и легочный клапаны устроены несколько по–иному: каждый из них состоит из трех кармашков в виде полумесяцев, окружающих устье сосуда (поэтому их называют полу лунными клапанами). Когда полулунные клапаны замкнуты, их створки образуют фигуру в виде трехконечной звезды (рис. 19.25). Во время диастолы токи крови устремляются за створки клапанов и завихряются позади них (эффект Бернулли); в результате клапаны быстро закрываются, благодаря чему регургитация крови в желудочки очень невелика. Чем выше скорость кровотока, тем плотнее смыкаются створки полулунных клапанов.

Сердечный цикл

Открывание и закрывание сердечных клапанов связаны прежде всего с изменениями давления в тех полостях сердца и сосудах, которые отграничиваются этими клапанами. Движение клапанов в свою очередь влияет на сократительную функцию сердца.

Систолу и диастолу разделяют на несколько периодов. Каждый из этих периодов характеризуется либо изменением давления при постоянном объеме, либо изменением объема при относительно небольшом изменении давления. Систола подразделяется на период изоволюметрического сокращения и период изгнания, а диастола–на период изоволюметрического расслабления и период наполнения. На рис. 19.26 изображены временные соотношения между этими периодами и некоторые параметры цикла для левого желудочка.

Период изоволюметрического сокращения. В самом начале систолы атриовентрикулярные клапаны быстро захлопываются вследствие повышения внутрижелудочкового давления. Поскольку в первый момент полулунные клапаны также закрыты, желудочек продолжает сокращаться, но его объем не изменяется (кровь несжимаема), и давление в нем продолжает быстро возрастать (рис. 19.26). Тем не менее сокращение сердца в этот момент нельзя считать абсолютно изометрическим, ибо при этом изменяется как форма желудочка (его конфигурация

Рис. 19.26. Изменения в некоторых процессах и параметрах во время сердечного цикла. Четыре периода цикла обозначены вверху. Римскими цифрами отмечены тоны сердца

приближается к шарообразной), так и–активно или пассивно – длина   практически   всех   волокон миокарда. При частоте сокращений сердца, соответствующей состоянию покоя, длительность периода изоволюметрического сокращения левого желудочка составляет примерно 60 мс.

В клинической практике обычно считается, что период изоволюметрического сокращения длится от начала комплекса QRS ЭКГ до начала фазы изгнания. Однако в этом периоде можно выделить фазу деформации (от начала комплекса QRS до начала

первого тона) и фазу нарастания давления (от начала первого тона до начала изгнания) В отечественных учебниках часто применяется иная терминология: от начала комплекса QRS до начала изгнания длится период напряжения (соответствует «периоду изоволюметрического сокращения» в настоящем пособии), который делится на фазу асинхронного сокращения (соответствует «фазе деформации») и фазу изоволюметрического сокращения (соответствует «фазе нарастания давления»).

Период изгнания. Когда давление в левом желудочке становится выше диастолического давления в аорте (т. е. превышает 80 мм рт. ст.), полулунные клапаны открываются, и начинается период изгнания крови. Сначала внутрижелудочковое давление продолжает  повышаться,  достигая  примерно 130 мм рт. ст.; в конце систолы оно вновь падает. Как видно из кривой изменения объема на рис. 19.26, в покое ударный объем (УО) желудочка, т. е. количество крови, выбрасываемое за один цикл, составляет около половины конечнодиастолического объема, равного примерно 130 мл. Таким образом, в конце периода изгнания в сердце остается около 70 мл крови; это так называемый конечно–систолический, или резервный, объем (РО). Величина отношения ударного объема к конечнодиастолическому называется фракцией выброса; в нашем случае она составляет около 0,46 (46%). Закрытие аортальных клапанов, означающее окончание систолы, наступает несколько позднее, чем можно было ожидать исходя из изменения давления (рис. 19.26). Очевидно, это объясняется тем, что объем крови, выброшенный во время систолы, обладает некоторой инерцией: под действием сообщенной ему кинетической энергии он некоторое время продолжает продвигаться против градиента давления.

Период   изоволюметрического   расслабления.

Диастола, так же, как и систола, начинается с короткого периода замкнутых клапанов, длительностью около 50 мс. В этот период происходит изоволюметрическое расслабление: внутрижелудочковое давление быстро падает, приближаясь к нулю. Когда давление в желудочках становится меньше, чем в предсердиях, атриовентрикулярные клапаны открываются и начинается наполнение желудочков кровью, которая будет выброшена в следующей систоле.

Период наполнения. Давление в желудочке в период наполнения изменяется незначительно, а объем возрастает–сначала очень быстро (фаза быстрого наполнения), затем медленнее (фаза диастазиса). В условиях нормального ритма сердца к моменту сокращения предсердий заполнение желудочков практически завершается, поэтому при систоле предсердий внутрижелудочковый объем увеличивается лишь примерно на 8%. Однако при высокой частоте сокращений диастола укорачивается в большей степени, чем систола, и в этом случае вклад предсердий в наполнение желудочков становится весьма ощутимым.

Особенности цикла правого сердца. Все сказанное выше относится к левому сердцу, однако в принципе те же периоды наблюдаются и в цикле сокращения правого сердца. Деятельность правого сердца отличается тем, что развиваемое им систолическое давление должно быть значительно меньше, чем в левом сердце (это связано с более низким сопротивлением легочных сосудов). Ударный же объем у обоих желудочков примерно одинаков. Периоды цикла двух половин сердца не совсем совпадают: поскольку давление в правом желудочке во время систолы повышается в меньшей степени, чем в левом, период сокращения правого желудочка начинается позже и длится меньше по сравнению с левым. В связи с этим период изгнания начинается раньше в правом желудочке. В то же время систола правого желудочка заканчивается позже. Все эти фазовые различия относительно невелики (около 10–30 мс) и практически не влияют на гемодинамику.

Нарушение деятельности клапанов. Если через разрез в сердце животного наблюдать за тем, как открываются и захлопываются клапаны, то можно убедиться в поразительной скорости и точности их движений. Неудивительно, что нарушения деятельности клапанов, когда, например, в результате воспаления они либо не полностью открываются (стеноз), либо неплотно смыкаются (недостаточность), существенно затрудняют работу сердца. В результате соответствующие полости сердца, вынужденные развивать большие давления или выбрасывать больший объем крови, расширяются, а это в свою очередь приводит к их гипертрофии или дилатации. Благодаря таким приспособительным изменениям пороки клапанов могут компенсироваться в течение многих лет.

Взаимосвязь между внутрисердечным давлением и напряжением в стенке сердца. На первый взгляд кажется, что повышение внутрижелудочкового давления во время периода изгнания связано с развитием мускулатурой желудочков дополнительного усилия, однако это не так. На самом деле это повышение давления объясняется чисто физическими причинами и обусловлено уменьшением размеров сердца. Напряжение F в стенке сердца (силу, приходящуюся на единицу площади поперечного сечения стенки) и внутреннее давление Р в полой сфере радиусом г и толщиной стенки h связывает уравнение Лапласа: (рис. 19.27).

Желудочек можно рассматривать как полую сферу, радиус которой во время периода изгнания

 

Рис. 19.27. Справа: соотношение между давлением в полости желудочка и напряжением в его стенке (при допущении, что желудочек имеет форму сферы). Для ясности две эти силы показаны отдельно. Внутреннее давление Р (сила, отнесенная к единице площади) стремится как бы раздвинуть две полусферы с силой, равной Рr2π. Напряжение в стенке действует в противоположном направлении; если толщина стенки h мала по сравнению с r, то напряжение в ней равно 2rpd, где F–сила, приходящаяся на единицу площади поперечного сечения стенки. По закону Лапласа сила давления уравнивается с силой напряжения. Слева: изменение радиуса, толщины стенки, внутреннего давления и напряжения в стенке левого желудочка во время периода изгнания (между стрелками)

 

уменьшается, а толщина стенки – увеличивается. В таком случае из приведенного уравнения видно, что в период изгнания при постоянной (а в нашем случае даже уже уменьшающейся) силе будет возрастать внутрижелудочковое давление (рис. 19.27, внизу). При постоянном давлении напряжение в стенке будет пропорционально радиусу сферы и обратно пропорционально толщине ее стенки. Это соотношение (закон Лапласа) имеет большое значение, и мы не раз обратимся к нему в дальнейшем.

Функциональная анатомия и геометрия сокращения желудочков

На поперечном разрезе сердца, проведенном через середины обоих желудочков, видно, что толщина их стенок различна. Эта разница обусловлена тем, что желудочки должны развивать разные усилия. Особенности деятельности правого и левого желудочков отражаются не только на их мышечной массе, но и на строении. Стенка левого желудочка состоит в основном из мощной циркулярной мускулатуры. Ее волокна образуют как бы полый цилиндр, снаружи и внутри которого от основания к верхушке сердца идут так называемые спиральные мышцы. Стенка же правого желудочка состоит главным образом из таких спиральных мышц, а его циркулярная мускулатура развита относительно слабо.

Сокращение правого желудочка. Особенности сокращений правого желудочка вытекают из расположения его мускулатуры. Правый желудочек образует как бы тонкостенный кармашек в виде полумесяца, примыкающий к левому желудочку. Отношение общей площади поверхности такой полости к ее объему достаточно велико, поэтому при небольшом смещении стенки правого желудочка к перегородке его объем существенно изменяется. Поскольку сопротивление легочных сосудов невелико, правый желудочек при небольшом усилии может развивать давление, обеспечивающее нормальный выброс. Кроме того, уменьшению объема правого желудочка способствует смещение межжелудочковой перегородки в результате сокращения левого желудочка.

Сокращение левого желудочка. Мощная циркулярная мускулатура левого желудочка способна создавать высокое давление, обеспечивающее выброс крови в большой круг кровообращения. При нормальном наполнении сердца в диастоле этот выброс осуществляется прежде всего за счет сокращения этой мускулатуры. Однако, если по тем или иным причинам наполнение желудочков снижается, их радиус, а следовательно, и степень возможного укорочения циркулярных волокон уменьшаются. Величина, на которую могут укоротиться продольно ориентированные спиральные волокна, уменьшается в меньшей степени, поэтому эти волокна играют большую роль в выбросе крови при сниженном наполнении желудочков. Таким образом, если при нормальном наполнении сокращение  левого  желудочка  сопровождается  уменьшением площади, его поперечного сечения, то в условиях пониженного конечнодиастолического объема левый желудочек при систоле укорачивается больше в длину, чем в ширину. Это явление чрезвычайно важно для понимания гак называемого эффекта смещения атриовентрикулярной перегородки.

Эффект смещения атриовентрикулярной перегородки. До сих пор систолу желудочков рассматривали только как процесс, обеспечивающий выброс крови. Однако благодаря так называемому эффекту смещения атриовентрикулярной перегородки систола желудочков участвует и в диастолическом наполнении. Во время периода изгнания желудочки одновременно выбрасывают кровь в крупные артерии и засасывают ее из крупных вен в предсердия. Это присасывающее действие обусловлено тем, что плоскость атриовентрикулярной перегородки смещается по направлению к верхушке сердца; при этом предсердия, находящиеся в этот момент в расслабленном состоянии, растягиваются. В правом желудочке, где развиты спиральные мышцы, сокращающиеся в продольном направлении, этот эффект наиболее выражен. В левом желудочке по причинам, изложенным выше, эффект смещения атриовентрикулярной перегородки играет большую роль в условиях пониженного наполнения. Благодаря этому эффекту в конце периода изгнания предсердия заполняются кровью (рис. 19.25, А). Когда сокращение желудочков сменяется их расслаблением, атриовентрикулярная перегородка возвращается в исходное положение. В начале этого обратного перемещения атриовентрикулярные клапаны открываются, и их отверстия как бы надвигаются на кровь, находящуюся в предсердиях (рис. 19.25, Б). Этим обеспечивается быстрое наполнение желудочков в первый момент их расслабления, что играет важную роль при высоком ритме сокращений сердца, когда диастола укорочена.

Может возникнуть вопрос: почему же укорочение желудочков в продольном направлении приводит не к подтягиванию верхушки сердца вверх (как в случае изолированного сердца, перфузируемого через аорту), а к смещению атриовентрикулярной перегородки вниз? Здесь возможны по меньшей мере два объяснения. Во–первых, в естественных условиях верхушка не может перемещаться кверху, так как перикард в области верхушки фиксирован в диафрагме, а между перикардом и эпикардом находится слой несжимаемой (и нерастяжимой) жидкости. Во–вторых, во время систолы желудочков в направлении верхушки действует как бы сила отдачи.

Диастолическое наполнение желудочков происходит не только за счет описанного выше эффекта. Само по себе расслабление желудочков также оказывает некоторое присасывающее действие, связанное с тем, что пассивные эластические элементы их стенки стремятся вернуть сердцу после их деформации исходную форму. Желудочек в этом отношении можно сравнить с резиновой пипеткой, которая принимает прежнюю форму после того, как на нее надавили. Другие факторы, влияющие на венозный возврат, будут рассмотрены в гл. 20.

Внешние проявления деятельности сердца

Информацию о деятельности сердца у человека обычно получают путем изучения внешних проявлений этой деятельности. Существует целый ряд таких проявлений, которые можно при помощи соответствующего оборудования зарегистрировать с поверхности тела, не нанося при этом организму какого–либо вреда. Подобные методы исследования называются неинвазивными. К ним относится, например, ЭКГ (см. выше), отражающая электрическую активность сердца. Из проявлений, по которым можно судить о механической деятельности сердца, наиболее доступны для неинвазивных методов исследования следующие: верхушечный толчок, тоны сердца, артериальный пульс и венозный пульс.

Верхушечный толчок. У худых людей верхушечный толчок легко можно пропальпировать или даже увидеть. Он проявляется кратковременным выбуханием (иногда втяжением) в левом пятом межреберье по срединноключичной линии. Нельзя, однако, считать, что этот толчок связан лишь с перемещениями верхушки: он возникает в результате сложного изменения формы, объема и пространственного расположения сердца в целом. Запись верхушечного толчка – апекскардиограмма – позволяет получить определенную информацию о временных соотношениях периодов цикла сокращения левого желудочка.

Тоны сердца. При сокращениях сердца возникают колебания звуковой частоты (15–400 Гц), передающиеся на грудную клетку, где их можно выслушать либо просто ухом, либо при помощи стетоскопа. При выслушивании (аускулътации) сердца обычно можно различить два тона: первый из них возникает в начале систолы, второй–в начале диастолы. Первый тон длительнее второго; он представляет собой глухой звук сложного тембра. Этот тон связан главным образом с тем, что в момент захлопывания атриовентрикулярных клапанов сокращение желудочков как бы резко тормозится заполняющей их несжимаемой кровью. В результате возникают колебания стенок желудочков и клапанов, передающиеся на грудную клетку.

 

Второй тон, более короткий, связан с ударом створок полулунных клапанов друг о друга (поэтому его часто называют клапанным тоном). Колебания этих створок передаются на столбы крови в крупных сосудах, и поэтому второй тон лучше выслушивается не непосредственно над сердцем, а на некотором отдалении от него по ходу тока крови (аортальный клапан аускультируют во втором межреберье справа, а легочный–во втором межреберье слева). Первый тон, напротив, лучше выслушивается непосредственно над желудочками: в пятом левом межреберье по срединноключичной линии аускультируют левый атриовентрикулярный клапан, а по правому краю грудины–правый.

Фонокардиография. При помощи специальных микрофонов и регистрирующей аппаратуры можно записать отдельные колебания, из которых состоят тоны сердца (рис. 19.26). Такая запись называется фонокардиограммой; она позволяет не только осуществлять постоянную регистрацию тонов, но и исследовать временные соотношения между этими тонами и другими процессами, происходящими во время сердечного цикла. Применение частотных фильтров дает возможность более четко выделить отдельные компоненты каждого тона и исследовать патологические звуковые явления.

Первый тон. Существуют три основных компонента этого тона. Первый из них–это медленная низкоамплитудная волна, обусловленная изменением формы левого желудочка в начале периода изоволюметрического сокращения. Затем следует более значительная волна, возникающая в связи с резким нарастанием внутрижелудочкового давления. Третий компонент первого тона состоит из двух волн: первая из них совпадает с началом периода изгнания, вторая приходится на раннюю стадию этого периода.

Второй тон. Начало второго тона означает конец периода изгнания и обычно совпадает с концом зубца Т на ЭКГ. Иногда второй тон бывает расщеплен: первый компонент в этом случае обусловлен закрыванием аортального клапана, а второй совпадает с закрыванием легочного клапана.

Третий и четвертый тоны. Когда в начальной стадии периода наполнения кровь устремляется в желудочки, возникает третий тон. Этот тон слышен обычно лишь у детей, так как звуки у них лучше проводятся к поверхности тела. Иногда в интервале между концом зубца Р и началом зубца Q можно зарегистрировать четвертый тон, обусловленный сокращением предсердий. Этот тон не прослушивается при обычной аускультации.

Сердечные шумы. Сердечные шумы–это патологические звуковые явления, связанные главным образом с завихрениями тока крови. Шумы характеризуются большей частотой (около 800 Гц) и длительностью и меньшей скоростью нарастания и убывания по сравнению с нормальными тонами сердца. Шумы часто наблюдаются при врожденных или приобретенных пороках клапанов сердца (стеноз, недостаточность), а также при дефектах межпредсердной или межжелудочковой перегородок. Диагностическими признаками, позволяющими выявить причину шума, служат его характер, время возникновения (шумы могут быть систолическими или диастолическими) и место наилучшего выслушивания. Так, при аортальном стенозе кровь во время периода изгнания выбрасывается через суженное отверстие аорты. В результате возникают завихрения, сопровождающиеся громким систолическим шумом; этот шум постепенно нарастает и убывает, следует за первым тоном и наиболее четко выслушивается во втором межреберье справа от грудины. Если систолический шум лучше всего выслушивается в области верхушки сердца, можно думать о недостаточности митрального клапана. При этом пороке шум обусловлен обратным забросом (регургитацией) через дефект митрального клапана из левого желудочка в левое предсердие. Однако систолический шум ни в коем случае нельзя считать достоверным признаком органического поражения: такие шумы могут появляться, например, при изменениях состава крови. Диастолические шумы возникают при таких состояниях, как недостаточность полулунных клапанов или стеноз атриовентрикулярных клапанов. В этом случае о том или ином пороке также судят по тому, где лучше выслушивается шум.

Сфигмограмма сонной артерии. В настоящей главе пульсация сосудов будет рассмотрена лишь с точки зрения того, какую информацию она дает для оценки функционального состояния сердца. При выбросе крови из левого желудочка по артериям распространяется волна давления. На записи этой пульсовой волны (сфигмограмме), произведенной от близко расположенных к сердцу сосудов (например, общей сонной артерии), видны типичные изменения давления (рис. 19.26). Выброс крови из желудочков приводит прежде всего к быстрому нарастанию давления до пика на кривой сфигмограммы. Затем следует фаза снижения давления, во время которой захлопываются аортальные клапаны. В момент их закрытия на сфигмограмме появляется четко ограниченная выемка–инцизура. Время от начала кривой до инцизуры соответствует периоду изгнания левого желудочка. Однако следует помнить, что начало периода изгнания не совсем соответствует подъему кривой сфигмограммы, так как для распространения пульсовой волны от аорты до сонной артерии требуется определенное время, в связи с чем пульсация сонной артерии несколько отстает от звуковых и электрических сигналов, передающихся практически мгновенно. Это так называемое время запаздывания пульсовой волны можно определить, измерив интервал от начала второго тона до инцизуры (на рис. 19.26 соответствует участку сфигмограммы, закрашенному розовым).

 

Рис. 19.28. Принцип эхокардиографии. Датчик работает по принципу испускания и улавливания быстрых сигналов. В результате получают кривые, характеризующие изменения взаимного расположения и движение различных отражающих поверхностей во времени. Так, очень четко видно захлопывание митрального клапана в начале систолы (указано стрелками). На приведенной слева эхокардиограмме: ПЖ–правый желудочек, МЖС–межжелудочковая стенка, ЛЖ–левый желудочек, МПК и ЗМК–передний и задний митральные клапаны соответственно

 

Венозный пульс. Во время сердечного цикла меняется степень наполнения кровью центральных вен. Эти изменения внешне проявляются как колебания объема вен, например наружной яремной вены. Запись ее движений (флебограмма яремной вены) служит показателем деятельности правого сердца, и особенно правого предсердия (см. гл. 20).

Рентгенологическое исследование сердца. Эхокардиография. Сведения о размерах и форме сердца можно получить путем простого постукивания по грудной стенке (перкуссии) и определения области глухого звука. Для более точного, документированного исследования используют рентгеноскопию сердца. Больного помещают на расстоянии 2 м от источника рентгеновских лучей (при этом не возникает искажений, связанных с расхождением лучей на малых расстояниях). В последнее время для исследования сердца стали широко применять способ эхолокации. При эхокардиографии записывают ультразвуковые колебания, отраженные от различных поверхностей сердца–наружных и внутренних поверхностей стенок, клапанов и т.д. (рис. 19.28). Этот метод позволяет получить ценные сведения о расстоянии между различными структурами, находящимися в радиусе ультразвукового луча, а также об изменениях этих расстояний (например, об изменениях размеров сердца, движениях клапанов и т.д.). Поскольку имеющиеся в настоящее время данные свидетельствуют о том, что в дозах, применяемых при эхокардиографии, ультразвуковые лучи (в отличие от рентгеновских) безвредны для человека, эхокардиографическое исследование можно производить многократно.

Инвазивные методы исследования сердца:

внутрисердечные измерения

Неинвазивные методы исследования–ЭКГ, исследование тонов сердца и т. п.–имеют, разумеется, большое практическое значение. Однако при помощи этих методов можно получить лишь косвенные данные о деятельности сердца, а в ряде случаев таких данных может оказаться недостаточно. В связи с этим в последние годы были разработаны методы внутрисосудистых и внутрисердечных измерений при помощи специальных катетеров. Эти последние представляют собой гибкие трубки различной формы, длины и диаметра. Их вводят в периферические кровеносные сосуды и, как правило под контролем рентгена, проводят в сердце. Катетер, введенный в периферическую вену, обычно без труда проходит в правое предсердие, правый желудочек и легочный ствол. Левое сердце катетеризуется ретроградно (через периферическую артерию) либо путем осторожного прокола межпредсердной перегородки из полости правого предсердия.

Внутрисердечные измерения. Катетеризацию сердца применяют прежде всего для измерения давления в его полостях и прилегающих сосудах; при этом получают запись изменения давления, подобную кривой на рис. 19.26. В табл. 19.2 приведены значения давления в магистральных сосудах и полостях сердца, имеющие наибольшее практическое значение. При помощи катетера можно также произвести забор проб крови из той или иной области и определить, например, содержание в них кислорода. Если через катетер ввести какой–либо индикатор, то можно построить так называемую кривую разведения, позволяющую вычислить сердечный выброс. Можно также ввести какое–либо контрастирующее вещество и затем быстро сделать серию рентгенограмм. При этом будут видны различные сосуды и камеры сердца в разных фазах сердечного цикла. Этот метод называется ангиокардиографией. Наконец, при помощи катетера можно зарегистрировать либо электрическую активность (электрокардиограмму пучка Гиса), либо тоны сердца (внутрижелудочковую фонограмму), однако для этого необходима сложная аппаратура, на которой могут работать только врачи–специалисты.

19.5. Приспособление сердечной деятельности к различным нагрузкам

В настоящей главе мы прежде всего рассмотрим работу, которую сердце должно совершать для поддержания кровообращения в нормальных условиях, и лишь после этого разберем механизмы, позволяющие при необходимости изменять эту активность.

Сердечным выбросом называют количество крови, выбрасываемое правым или левым желудочком в единицу времени. В норме эта величина варьирует в широких пределах: при необходимости сердечный выброс может увеличиваться более чем в пять раз по сравнению с уровнем покоя. Поскольку желудочки соединены последовательно (см. рис. 19.1), их выбросы при каждом сокращении должны быть примерно одинаковыми. Так, если выброс правого желудочка будет всего на 20% больше, чем выброс левого, то через несколько минут неизбежно наступит отек легких в результате переполнения кровью малого круга кровообращения. Однако в норме этого не происходит, что свидетельствует о наличии механизма, согласующего выбросы обоих желудочков. Даже в тех случаях, когда возрастает системное сосудистое сопротивление (например, в результате сужения сосудов), опасного застоя крови не происходит: левый желудочек быстро приспосабливается к изменившимся условиям, начинает сокращаться сильнее и развивает давление, достаточное для выброса прежнего количества крови. Колебания венозного возврата и диастолического наполнения также компенсируются путем приспособительных изменений сердечного выброса.

Эта удивительная способность сердца к адаптации обусловлена двумя типами регуляторных механизмов: 1) внутрисердечной регуляцией (такая регуляция связана с особыми свойствами самого миокарда, благодаря чему она действует и в условиях изолированного сердца) и 2) экстракардиальной регуляцией, которую осуществляют эндокринные железы и вегетативная нервная система.

Соотношение между давлением и объемом в условиях изолированного сердца

В принципе полоски миокарда обладают теми же механическими свойствами, что и скелетные мышцы (см. гл. 4). Так, изолированная сосочковая мышца обладает эластичностью, и ее можно растянуть; при постоянной нагрузке она способна к активному укорочению (изотоническое сокращение), а при постоянной длине она может активно развивать напряжение (изометрическое сокращение). Сократительные свойства мышцы отображает так называемая двухкомпонентная модель. Эта модель включает сократительный и эластический элементы, соединенные последовательно (рис. 19.29, Б) (чтобы отразить некоторые свойства расслабленной мышцы, необходим третий компонент, подключенный параллельно вышеописанным элементам; в данном случае мы можем им пренебречь). В этой модели изометрическое сокращение выражается в укорочении сократительного элемента, сопровождающемся соответствующим растяжением эластического [10].

Простейшие типы мышечных сокращений. Вполне можно считать, что интактный миокард подчиняется в основном тем же закономерностям, что и изолированная сосочковая мышца. Однако при перенесении результатов, полученных путем измерения мышечных сокращений в одном направлении, на полые мышечные образования необходимо учитывать, что объем таких образований изменяется пропорционально длине волокон в третьей степени. Кроме того, при постоянном напряжении в стенке полости давление в этой полости в соответствии с законом Лапласа  обратно пропорционально ее радиусу (если форма полости близка к сферической). На рис. 19.29, А приведены механические параметры трех основных интересующих нас типов сокращений как для длинных мышц, так и для сферических мышечных полостей. В средней части рисунка (Б) показано, как ведут себя сократительный и эластический элементы двухкомпонентной модели при каждом типе сокращения. На нижней части рисунка (В) приведены кривые давление–объем, полученные для мышечных полостей по аналогии с графиками длина–напряжение для скелетных мышц. Сокращение с постнагрузкой, наиболее близкое к естественному сокращению сердца, начинается с изоволюметрической фазы. Во время этой первой фазы давление в полости нарастает при постоянном объеме, и когда оно становится равным гидростатическому давлению столба жидкости над клапаном, последний открывается и начинается изотоническое сокращение с изменением объема.

Равновесные кривые. Кривые давление объем, приведенные на рис. 19.29, В, соответствуют одному

 

Рис. 19.29. Простейшие типы сокращений миокарда. А. Условия сокращения длинного мышечного препарата (сосочковая мышца) и мышечной полости (перфузируемый желудочек). Б. Процессы в двухкомпонентной модели при различных типах сокращений (СЭ–сократительный элемент; ЭЭ–последовательный эластический элемент; Н–нагрузка; По–постнагрузка; Пр–преднагрузка). В. Кривые давление–объем при трех типах сокращений

исходному состоянию – определенному объему при определенном конечнодиастолическом давлении. При изменениях этого давления изменяется и объем, что в свою очередь влияет на амплитуду изоволюметрических или изотонических сокращений. Все эти взаимосвязи можно представить в виде так называемых равновесных кривых (рис. 19.30, А). Равновесные кривые охватывают всю область значений, в пределах которой при определенном сократительном состоянии полого мышечного органа происходят все возможные изменения давления и объема.

В опыте (например, на изолированном сердце лягушки) равновесные кривые получают следующим образом. Прежде всего измеряют объем желудочка при различных значениях давления наполнения (например, с помощью установки, изображенной на рис. 19.31) и в результате получают кривую пассивного растяжения. Видно, что наклон этой кривой постепенно возрастает; это означает, что пассивная растяжимость сердца при повышении его объема уменьшается (для увеличения объема на одну и ту же величину требуется все больший прирост давления). Можно вызвать изоволюметрические или изотонические сокращения сердца при исходных условиях, соответствующих любой точке кривой пассивного растяжения (рис. 19.30). При этом измеряют максимальные значения давления и объема, наносят соответствующие точки на график и соединяют их. В результате получают кривые изоволюметрических и изотонических максимумов. На рис. 19.30 в качестве примера приведены две точки кривой пассивного растяжения (Р1 и Р2) и соответствующие им максимумы. Видно, что максимальные значения развиваемого давления и выбрасываемого объема зависят от степени исходного наполнения желудочков. При увеличении этого наполнения максимальные значения давления и объема сначала растут, а затем начинают снижаться (или возрастать менее круто). Смысл этого важного явления заключается в том, что сердце может изменять развиваемое им давление или выбрасываемый объем в зависимости только от количества притекающей крови в отсутствие каких–либо других влияний.

Причины изменений максимумов давления и объема.

Одна из причин зависимости максимальных параметров сокращения от исходного объема желудочков связана с особенностями расположения миофиламентов в саркомере. При рассмотрении механизмов сокращения скелетной мышцы  указывалось, что укорочение мышцы обусловлено скольжением актиновых нитей вдоль миозиновых (наподобие вдвигания одна в другую труб телескопа). Это скольжение происходит благодаря поперечным мостикам между актиновыми и миозиновыми нитями, образующимися там, где эти нити перекрываются. Степень их перекрывания оптимальна при средних значениях исходного растяжения. Если исходный объем сердца слишком велик, сокращение становится невозможным, так как при этом актиновые нити настолько отдаляются от миозиновых, что связь между ними почти или полностью утрачивается. Однако главная причина увеличения силы сокращений при растяжении кроется, по–видимому, в увеличении чувствительности миофиламентов к кальцию [11]. Следует, однако, помнить, что развиваемое давление зависит не только от силы сокращения миокарда, но также от геометрии желудочков.

Диаграмма работы сердца. В нижней части рис. 19.30 на равновесные кривые графика давление–объем, представленного в верхней части того же рисунка, нанесены красные линии. Эти линии отражают нормальный цикл сокращения левого желудочка и образуют замкнутую фигуру, называемую диаграммой работы сердца. Площадь на графике давление–объем, т.е. произведение PV, имеет размерность работы (перемещение объема против давления). Отрезки между точками А и Г на диаграмме отражают различные периоды сердечного цикла. От точки А, расположенной на кривой пассивного растяжения, начинается систола; давление сначала возрастает при постоянном объеме. Отрезок АБ соответствует периоду

 

Рис. 19.30. Равновесные кривые и диаграмма работы изолированного сердца лягушки. А. В системе координат, где по оси ординат отложено внутрижелудочковое давление, а по/ оси абсцисс–объем желудочка, строятся три равновесные кривые–кривая пассивного растяжения и кривые изоволюметрических и изотонических максимумов. Каждой точке на кривой пассивного растяжения (в качестве примера приведены две такие точки) соответствуют определенные значения изоволюметрического и изотонического максимумов (изображены стрелками). Б. На кривые, приведенные в верхней части рисунка, нанесен график сердечного цикла–диаграмма работы сердца. Замкнутая кривая АБВГА отражает различные периоды цикла (см. в тексте). Значения давления и объема при любых сокращениях с постнагрузкой, исходные параметры которых соответствуют точке А, должны лежать на штриховой линии, соединяющей точку Б' (изоволюметрический максимум для А) с точкой А' (изотонический максимум для А)

 

изоволюметрического сокращения. По достижении диастолического давления в аорте (точка Б) аортальные клапаны открываются и начинается период изгнания. Во время этого периода сокращение происходит ауксотонически: изменяются как объем, так и давление. Точка В соответствует моменту, когда весь ударный объем выброшен и начинается фаза изоволюметрического расслабления (отрезок ВГ). Наконец, после открытия митральных клапанов начинается заполнение желудочков (отрезок ГА), т. е. подготовка к следующему сокращению.

Систола желудочков в соответствии с приведенным выше определением–это сокращение с постнагрузкой. Преднагрузкой (рис. 19.29, А) называется конечнодиастолическое напряжение в стенке желудочка, зависящее от степени его наполнения. Мерой же постнагрузки служит напряжение в стенке, необходимое для преодоления конечнодиастолического давления в аорте или легочной артерии. В связи с этим постнагрузку можно уменьшить либо путем снижения конечнодиастолического давления в магистральных артериях, либо (в соответствии с законом Лапласа) путем уменьшения диаметра желудочка. Если постнагрузка левого желудочка

 

Рис. 19.31. Сердечно–легочный препарат по Старлингу. Сохраняется легочное кровообращение; большой круг кровообращения заменен измерительной системой, заполненной кровью. Насыщение крови кислородом происходит путем искусственной вентиляции легких. Кровь, выбрасываемая левым желудочком, попадает в венозный резервуар; поднимая и опуская этот резервуар, можно произвольно менять давление наполнения правого желудочка (а также левого, поскольку гидродинамическое сопротивление сосудов легких невелико). Системное сопротивление можно менять, изменяя величину давления в стеклянном цилиндре, окружающем тонкостенную резиновую трубку, и тем самым изменяя степень сдавливания последней

(т. е– диастолическое давление в аорте) достаточно велика, то его сокращение становится чисто изоволюметрическим (давление повышается до точки Б' на рис. 19.30, однако остается недостаточным для того, чтобы открылись аортальные клапаны и произошел выброс крови). Если бы, напротив, постнагрузка была равна 0, то сокращение стало бы чисто изотоническим: объем уменьшился бы до точки А'. В норме такие варианты не встречаются. Максимальные значения всех сокращений с постнагрузкой, исходные условия которых соответствуют точке А, лежат на линии, соединяющей точки А' и Б'. Эту линию называют кривой максимумов сокращений с постнагрузкой (кривой СПН) для точки А (рис. 19.30). Таким образом, для каждого графика давление–объем существуют одна кривая изотонических максимумов, одна кривая изоволюметрических максимумов и множество кривых СПН–по одной для каждой точки, лежащей на кривой пассивного растяжения.

Саморегуляторные реакции сердца на кратковременные нагрузки объемом и давлением

Препарат сердце–легкие.  Препарат сердца млекопитающего, предложенный английским физиологом Э. Старлингом (рис. 19.31), позволяет независимо и в широких пределах изменять давление в аорте и венозный возврат. Это дает возможность сопоставлять данные параметры с конечнодиастолическим размером желудочков. Сердце в таком препарате сохраняет естественные связи с искусственно вентилируемым легким, а вместо большого круга кровообращения подключена система трубочек, заполненных кровью; в этой системе трубочек имеется устройство для изменения гидродинамического сопротивления, а также для измерения давления в ряде точек. Венозный приток устанавливают путем регуляции оттока из специального резервуара. Поскольку температура крови поддерживается на постоянном уровне, а сердечные нервы пересечены, ритм сердца не меняется. Рассмотрим возможности приспособления такого «редуцированного сердца» к различным нагрузкам.

Приспособление к кратковременной нагрузке объемом. Приток к сердцу в препарате Старлинга увеличивают, поднимая венозный резервуар. Реакции левого желудочка на изменение нагрузки объемом изображены на рис. 19.32, А. Серым изображена исходная рабочая диаграмма сердца; конечнодиастолический объем равен 130 мл, а ударный объем–70 мл. Таким образом, конечносистолический объем равен 60 мл. При увеличении венозного притока конечнодиастолический объем повышается до 180 мл. Этому соответствует новая рабочая диаграмма (на рисунке закрашена розовым). Видно, что увеличение ударного объема примерно до 90 мл сопровождается возрастанием конечносистолического объема, но значения изоволюметрического и изотонического максимумов при этом не меняются. Диастолическое давление в аорте почти не меняется, а систолическое возрастает, так как выбрасываемый в аорту ударный объем повышается и ее растяжение возрастает. Поскольку исходная точка рабочей диаграммы смещается, эта диаграмма строится уже с учетом новой кривой СПН (СПН 2). Главный вывод из этих результатов заключается в том, что изолированное сердце при постоянной частоте сокращений может самостоятельно – посредством саморегуляции – приспосабливать свою деятельность к возрастающей нагрузке объемом, отвечая на нее увеличенным выбросом. В честь авторов, открывших эту закономерность, она называется механизмом Франка–Старлинга. В принципе этот механизм лежит также в основе приспособления сердца к увеличенной нагрузке давлением.

 

 

Рис. 19.32. Кривые давление–объем для левого желудочка, демонстрирующие адаптацию сердца к кратковременным нагрузкам объемом и давлением при помощи механизма Франка–Старлинга. А. Адаптация к нагрузке объемом, вызванной повышением диастолического наполнения. Б. Этапы приспособления к нагрузке давлением, обусловленной повышением периферического сопротивления (подробнее см. в тексте)

Приспособление к кратковременной нагрузке давлением. Если повысить гидродинамическое сопротивление в системе трубочек сердечно–легочного препарата, то сердце будет приспосабливаться к такой увеличенной нагрузке в несколько этапов. Рабочая диаграмма при этом будет изменяться, как это показано на рис. 19.32, Б. Повышение сопротивления оттоку крови приведет к тому, что в диастоле давление в аорте не вернется к прежнему уровню. В результате при очередной систоле левый желудочек должен будет развить большее давление (126 мм рт. ст. при исходном значении 90 мм рт. ст.), для того чтобы начался выброс крови (на рисунке – красная диаграмма, обведенная штриховой линией). Это приведет к уменьшению ударного объема, поэтому конечносистолический объем возрастет. Поскольку венозный возврат остается постоянным, конечнодиастолический объем при этом автоматически увеличивается. В результате рабочая диаграмма левого желудочка будет смещаться вдоль кривой пассивного растяжения, причем при каждом последующем сокращении конечнодиастолический объем желудочка будет увеличиваться. В итоге этот процесс приведет к установлению нового равновесия, при котором левый желудочек будет выбрасывать прежний ударный объем при повышенном давлении (красная диаграмма, обведенная сплошной линией). Таким образом, приспособление к нагрузке давлением происходит за счет саморегуляторных процессов, в основе которых лежит увеличение конечного диастолического объема. Однако в отличие от нагрузки объемом в данном случае большее растяжение волокон приводит к более мощному сокращению.

Динамика иннервируемого сердца in situ

Долгое время считалось, что закономерности адаптации изолированного сердца справедливы и для кардиодинамики в целом. В соответствии с законом Старлинга полагали, что работа сердца in situ может увеличиваться только в результате повышения конечнодиастолического объема и что сократительное состояние сердца (т. е. значения его изоволюметрических и изотонических максимумов) при этом не изменяется. Однако в настоящее время ясно, что такая точка зрения отнюдь не всегда справедлива;

по крайней мере она неприменима к изменениям сердечного выброса при физической нагрузке. Согласно закону Старлинга, размеры полноценно работающего сердца в покое должны быть малы, а при нагрузке–возрастать вследствие увеличенного венозного возврата. Однако на самом деле все происходит наоборот. Так, на здоровых людях методом рентгенологического исследования сердца было показано, что при выполнении ими работы на велоэргометре конечнодиастолический и конечносистолический размеры сердца уменьшаются. Эти приспособительные процессы обусловлены влиянием симпатической нервной системы, в результате которого сократимость миокарда возрастает независимо от исходного растяжения. С этим положительным инотропным эффектом мы уже сталкивались.

Повышение сократимости сердца (положительный инотропный эффект) и диаграммы работы сердца. На диаграммах работы левого желудочка (рис. 19.33) приспособление к физической нагрузке, описанное в предыдущем подразделе, проявляется в смещении кривой изоволюметрических максимумов вверх и в соответствующем увеличении наклона кривой сокращении с постнагрузкой. Из рис. 19.33 видно, что такая перестройка деятельности желудочков позволяет при одном и том же значении диастолического объема либо выбрасывать кровь против большего давления, либо увеличивать ударный объем без увеличения конечнодиастолического объема. Увеличение ударного объема приводит к снижению конечносистолического объема, так что, если венозный приток не возрастает, конечнодиастолический объем снижается. Этим объясняется уменьшение размеров сердца, о котором говорилось выше. Однако даже в том случае, если одновременно повышается венозный приток, увеличение частоты сокращений сердца под влиянием симпатических нервов (положительный хронотропный эффект) приводит к возрастанию количества проходящей через сердце крови, и благодаря этому переполнения желудочков не возникает.

Рис. 19.33. Влияние повышения сократимости (положительного инотропного эффекта) на работу левого желудочка. Под действием симпатических нервов кривая изоволюметрических максимумов смещается в сторону больших значений давления (указано стрелкой). Вследствие этого увеличивается угол наклона кривой СПН. В этих условиях при прежнем конечнодиастолическом объеме желудочек выбрасывает либо больший ударный объем (1), либо тот же ударный объем при повышенном давлении (2). Увеличение ударного объема сопровождается снижением конечносистолического объема–размеры сердца во время систолы уменьшаются

 

Функциональные резервы сердца. Мы убедились в том, что под влиянием симпатических нервов сердечный выброс может увеличиваться еще до возрастания венозного притока. Однако при этом остается неиспользованной еще одна возможность повысить сердечный выброс–увеличение конечнодиастолического объема. В связи с этим функциональные резервы сердца, т.е. возможность его приспособления к повышенным нагрузкам, предстают в новом свете. Раньше считалось, что эти резервы зависят от того, насколько конечнодиастолический объем при нагрузке может повышаться по сравнению с его величиной в состоянии покоя. Если, однако, учитывать положительное инотропное действие симпатических нервов, то функциональные резервы сердца, напротив, ограничены величиной конечнодиастолического объема в покое. Так, размеры сердца у спортсменов в покое значительно больше, чем у нетренированных людей: у спортсмена сердце в покое может вмещать объем в 3–4 раза больший, чем ударный (у обычного человека–соответственно лишь в два раза больше). Следовательно, функциональные резервы сердца спортсмена (рис. 19.34) выше. В соответствии же со старыми представлениями эти резервы должны быть очень невелики.

Влияние частоты сокращений сердца на кардиодинамику. Одно из наиболее существенных отличий изолированного сердца от сердца in situ заключается в том, что в организме частота сокращений сердца может меняться. При нагрузке сердечный выброс увеличивается главным образом за счет положительного хронотропного эффекта симпатических нервов. Однако возрастание частоты сокращений сопровождается не только повышением количества сокращений в минуту, но и характерным изменением временных соотношений между систолой и диастолой. В качестве примера приведем следующие данные:

 

Число ударов в 1 мин

Продолжительность систолы, с

Продолжительность диастолы, с

«Чистое» рабочее время, с/мин

70

0,28

0,58

19,6

150

0,25

0,15                                             

37,5

Видно, что при уменьшении длительности сердечного цикла прежде всего укорачивается диастола. В связи с этим при высокой частоте сокращений сердца «чистое» рабочее время желудочков, т.е. общая длительность всех систол за 1 мин, существенно возрастает, а длительность периодов покоя соответственно уменьшается. То, что диастола при этом значительно укорачивается, не влияет на наполнение желудочков, так как основная масса крови поступает в желудочки в начале диастолы и, кроме того, под действием симпатических нервов увеличивается скорость их расслабления (рис. 19.10, В).

 

 

 

Рис. 19.34. Схема развития нормального сердца и сердца спортсмена. Увеличение размеров сердца связано с удлинением и утолщением отдельных клеток миокарда. В сердце взрослого человека на каждую мышечную клетку приходится примерно один капилляр; у новорожденного же относительная плотность капилляров ниже [по Linzbach J. Klin. Wschr., 621 (1951)]

Симпатические нервы вызывают усиление сокращения предсердий, что также способствует более быстрому наполнению желудочков. Таким образом, когда под влиянием симпатических нервов частота сокращений сердца повышается примерно до 150 ударов в 1 мин, наполнение желудочков обычно существенно не падает.

Значение механизма Франка Старлинга в условиях работы сердца in situ. Ведущая роль симпатической системы в регуляции сердечного выброса не исключает того, что в определенных условиях на него влияют и другие факторы. Так, если наполнение сердца изменяется, а общая активность организма не повышается, деятельность сердца регулируется в зависимости от конечнодиастолического объема, т. е. в соответствии с механизмом Франка–Старлинга. Так осуществляется, в частности, координация выброса обоих желудочков. Поскольку желудочки сокращаются с одинаковой частотой, их выбросы могут согласовываться друг с другом только путем взаимного приспособления ударных объемов. Саморегуляторные механизмы включаются также при перемене положения тела, сопровождающейся изменением венозного возврата (при горизонтальном положении тела ударный объем больше, чем при вертикальном), резком увеличении объема циркулирующей крови (при переливаниях) и повышении периферического сопротивления. Эти механизмы действуют и играют большую роль при фармакологической блокаде симпатической нервной системы (b–симпатолитиками.

Показатели (индексы) сократимости (максимальная скорость прироста давления и фракция выброса).

Благодаря положительному инотропному действию симпатических нервов сердце способно при неувеличенном конечнодиастолическом объеме либо выбрасывать больший ударный объем, либо выбрасывать прежний ударный объем против повышенного давления. Такое же влияние оказывают на кардиодинамику повышение внеклеточной концентрации Са2+, введение сердечных гликозидов, а также повышение частоты сокращений сердца. Действие всех этих факторов сходно в том, что они вызывают увеличение работы сердца независимо от его исходного растяжения, иными словами, они повышают его сократимость. В том случае, если ударный объем или максимальное систолическое давление увеличивается по механизму Франка–Старлинга (в результате возрастания диастолического наполнения), сократимость не повышается (положительного инотропного эффекта нет).

Как указывалось выше, изменения сократимости можно выявить путем анализа кривых на графике давление–объем (рис. 19.33). Однако сами эти кривые можно построить лишь по данным, полученным в условиях эксперимента, после хирургической препаровки. Для получения данных о сократимости сердца in situ (в частности, сердца человека) необходимо использовать другие показатели. К ним относится, например, максимальная скорость прироста давления (dP/dtmax) во время периода изоволюметрического сокращения, которую можно измерить при помощи внутрисердечных катетеров. У человека она равна 1500–2000 мм рт. ст./с, или 200–265 кПа/с.

Использование этого показателя в качестве индекса сократимости теоретически основано на том, что агенты, оказывающие положительное инотропное действие при данном уровне исходного растяжения миокарда, увеличивают не только силу изометрических сокращений, но также максимальную скорость (Vmax изотонического укорочения сократительного элемента. Здесь Vmax относится по определению к крайнему случаю сокращения с постнагрузкой, когда величина нагрузки стремится к нулю (см. выше). При возрастании скорости укорочения сократительного элемента будет более быстро растягиваться и последовательно соединенный с ним эластический элемент; следовательно, увеличится скорость прироста давления при изоволюметрическом сокращении. Именно поэтому данный показатель используют в качестве индекса сократимости [8, 10].

Для оценки сократимости сердца во время периода изгнания используют так называемую фракцию выброса –отношение ударного объема (УО) к конечнодиастолическому объему (КДО). Эта величина показывает, какая часть внутрисердечного объема крови выбрасывается при систоле. В норме у человека в состоянии покоя она колеблется от 0,5 до 0,7 (т.е. 50–70%). Фракцию выброса обычно измеряют путем эхокардиографии.

Приспособление сердца к длительной физической нагрузке

Гипертрофия. Все рассмотренные выше регуляторные процессы позволяют сердцу быстро приспосабливаться к кратковременным изменениям нагрузки. При периодическом либо длительном повышении нагрузки на сердце в нем происходят структурные изменения, в результате которых оно увеличивается–гипертрофируется [18]. В качестве примера можно привести увеличение сердца у бегунов на длинные дистанции. Масса сердца у них может достигать 500 г (у нетренированных людей она равна 300 г; рис. 19.34). При гипертрофии сердца, постоянно работающего под нагрузкой, сначала равномерно увеличиваются длина и толщина миокардиальных волокон, но число их остается постоянным (рис. 19.34, внизу). При этом объем полостей сердца неизбежно увеличивается. В результате для развития прежнего давления требуется в соответствии с законом Лапласа  уже большее напряжение стенок сердца. Однако, поскольку мышечная масса при гипертрофии миокарда возрастает, сила, приходящаяся на единицу площади поперечного сечения стенки сердца, остается практически неизменной. Из этого следует, что, хотя сердце спортсмена вмещает больший объем крови, ему не приходится развивать дополнительное напряжение для того, чтобы создать давление. Этим гипертрофия отличается от острого расширения сердца. Гипертрофия сердца исчезает через несколько недель после того, как спортсмен перестает тренироваться. Если масса гипертрофированного сердца достигает критического уровня (около 500 г), то начинают увеличиваться не только размеры волокон, но и их количество. Такое состояние называют гиперплазией.

Патологические изменения сердца. При постоянной перегрузке отдельных камер сердца гипертрофируются только эти камеры. Обычно это происходит лишь при патологических процессах. Можно выделить два вида таких приспособительных изменений. Если имеется только нагрузка давлением, то вначале гипертрофия сердца не сопровождается существенным расширением его полостей (например, гипертрофия левого желудочка при аортальном стенозе). Однако в том случае, когда сердцу приходится совершать дополнительную работу для выброса повышенного объема, наряду с гипертрофией наблюдается расширение полостей (например, гипертрофия и дилатация левого желудочка при недостаточности аортального клапана). Приспособительные структурные изменения миокарда, направленные на компенсацию этих пороков, ограничены. По мере увеличения радиуса сердечных волокон растет и диффузионное расстояние между цитоплазмой этих волокон и капиллярами (рис. 19.34), что чревато нарушением оксигенации сердца. Если сильная патология сохраняется в течение некоторого времени, может возникнуть сердечная недостаточность.

19.6. Энергетика сокращения сердца

В предыдущих разделах с различных позиций рассматривалась работа сердца. Теперь мы обратимся к количественной стороне этого вопроса и более подробно разберем процессы, отвечающие за снабжение сердца энергией [19]. Прежде всего рассмотрим расход энергии при деятельности сердца.

Мощность и работа сердца

Виды работы сердца. Работа есть произведение силы и расстояния. Единицей работы является джоуль (1 джоуль = 1 ньютон·1 метр, сокращенно Н·м). Эта формула применима, в частности, к работе, совершаемой скелетной мышцей при укорочении и поднимании груза на определенную высоту (работа = вес груза х высота). Работа сердца в конечном счете также связана с укорочением волокон и развитием усилия. Однако в данном случае происходит не поднятие груза, а перемещение определенного объема крови (V) против сопротивления, создающегося за счет давления (Р). При этом совершается работа по перемещению объема против давления, равная P·V. К этой величине следует прибавить работу по сообщению крови ускорения: эта работа затрачивается на то, чтобы придать инертной массе (m) крови достаточно высокую скорость (v). Ее вычисляют, исходя из формулы для кинетической энергии:

Е= ½ mv2.

Расчет работы сердца. В связи с тем что во время систолы отдельные параметры, от которых зависит работа сердца, постоянно меняются, для вычисления этой работы следует проинтегрировать выражения P·V и mv2/2 по времени от начала до конца периода изгнания. Однако мы примем некоторые допущения, упрощающие эту задачу и в то же время позволяющие вычислять работу с достаточной степенью приближения. Можно считать, что Р – среднее систолическое давление у выхода из желудочка (1 мм рт. ст. соответствует 133 Н/м2, или 133 Па);V–ударный объем2); т–масса крови, которой придано ускорение, т. е. масса ударного объема (кг); v–средняя линейная скорость выброса (м/с). Значения всех этих параметров для одной систолы следующие.

 

Работа по перемещению объема против сил давления:

Р V

Левый желудочек

Правый желудочек

Р = 100 мм рт. ст. = 100–133 Н/м2

Р = 15 мм рт. ст. = 15·133 Н/м2

P·V= 0,931 Н·м

P·V= 0,140 Н·м

V=70мл=70•10–6м3;

V = 70 мл = 70 • 10–6м3;

Работа по сообщению крови ускорения: 1/2 mv2

 

Левый желудочек

Правый желудочек

m = 70 г= 70·10–3 KГ v = 0,5 м/с

1/2 mv2=0,009 Н–м

Полная работа А = 1,089 Н·м

Работа по сообщению крови ускорения измеряется в единицах кг·м2·с–2·м) (см. приложение). В старой литературе работа сердца обычно выражена не в Н·м, а в килограмм·сила·метр (кгс·м). 1 Н·м = 0,102 кгс·м.

0,3 Вт/Н. Работа левого желудочка по перемещению объема против сил давления значительно больше, чем работа по сообщению крови ускорения: на долю последней приходится лишь около 1% общей работы. Таким образом, работа сердца в целом во время систолы определяется главным образом величиной ударного объема и давления в аорте; она составляет примерно 1 Н·м (0,1 кгс·м).

Отношение работы по сообщению крови ускорения к общей работе сердца может значительно возрастать при увеличении ударного объема, сопровождающемся ускорением кровотока. Это отношение увеличивается также при снижении эластичности аорты в пожилом возрасте, так как уменьшение растяжимости «компрессионной камеры» приводит к падению диастолической скорости кровотока в аорте (рис. 19.31). В этих условиях при систоле сердцу приходится придавать ускорение объему крови, значительно превышающему ударный. Работа по сообщению крови ускорения в таких случаях может становиться почти равной работе по перемещению объема против давления.

Мощность сердца и отношение мощности к весу. Мощностью называют работу, совершаемую в единицу времени. Если частота сокращений сердца соответствует одному сокращению в секунду, то мощность сердца равна примерно 1 Вт (Н·м/с), или 0,1 кгс·м/с. Важной характеристикой двигателя любого типа является отношение мощности к весу: для сердца весом около 3 Н это отношение равно 0,3 Вт/Н. Эта величина довольно мала по сравнению с механическими двигателями; так, отношение мощности к весу для автомобильного мотора составляет 15–25 Вт/Н. Однако при мышечной работе мощность сердца может значительно возрастать, и отношение мощности к весу становится почти таким же, как у механических двигателей. Как бы то ни было, приведенные расчеты показывают, что в принципе можно создать такие искусственные насосы, которые при соответствующих условиях могли бы заменить живое сердце, будучи более легкими.

 

Потребление кислорода и питательных веществ

Энергию, необходимую для совершения механической работы, сердце получает главным образом за счет окислительного разложения питательных веществ. В этом отношении миокард принципиально отличается от скелетных мышц, которые при кратковременных нагрузках могут в значительной мере покрывать свои энергетические потребности за счет анаэробных процессов – образующийся в них «кислородный долг» может быть восполнен в дальнейшем. О значении окислительных процессов для сердца говорит обилие в клетках миокарда митохондрий–органелл, содержащих ферменты окисления.

Потребление кислорода и КПД сердца. Потребление сердцем кислорода in situ обычно определяют, измеряя разницу между содержанием этого газа в артериальной крови и в крови коронарных вен (ав–разница по O2) и умножая полученную величину на объемную скорость кровотока в коронарных сосудах. В покое потребление сердцем кислорода, рассчитанное по этому способу, равно примерно 0,08–0,1 мл • г/мин. Таким образом, сердце массой 300 г потребляет 24–30 мл O2 в минуту. Это примерно 10% общего потребления кислорода у взрослого человека в покое; масса же сердца составляет лишь около 5% массы тела. При интенсивной работе потребление кислорода миокардом может возрастать в четыре раза по сравнению с покоем. На первый взгляд кажется, что потребление кислорода сердцем должно зависеть в основном от его вклада в общую работу организма за период одной систолы. Однако на самом деле это не так: при одной и той же работе сердце потребляет значительно больше кислорода в том случае, когда оно выбрасывает кровь против повышенного давления, чем когда оно изгоняет больший объем при низком давлении. Таким образом, коэффициент полезного действия сердца (т. е. доля энергии, идущая на совершение механической работы) при нагрузке давлением меньше, чем при нагрузке объемом (рис. 19.35). У здорового сердца КПД составляет в зависимости от преобладания той или иной нагрузки 15–40%.

                                                    

При коронарной недостаточности, когда потребность сердца в кислороде превышает его поступление с кровью, пытаются снизить системное периферическое сопротивление с целью уменьшить артериальное давление и тем самым сократить потребление сердцем кислорода. На этом основано, в частности, терапевтическое действие нитроглицерина во время приступов стенокардии.

Факторы, влияющие на потребление кислорода.

Проведенные исследования показали, что объем кислорода, потребляемый сердцем за одну систолу, зависит прежде всего от напряжения волокон миокарда и что при увеличении периода сокращения этот объем возрастает. Поэтому вошел в употребление показатель время–напряжение, выраженный как произведение среднего напряжения волокон миокарда на длительность систолы. При постоянном размере желудочков можно, исходя из закона Лапласа, использовать вместо напряжения волокон среднее систолическое давление в аорте. При колебаниях частоты сокращений сердца потребление O2 изменяется приблизительно в такой же степени, в какой при этом меняется «чистое» рабочее время (произведение длительности систолы на частоту). В связи с этим потребление кислорода примерно пропорционально квадратному корню из частоты сокращений сердца. Остановленное сердце также потребляет некоторое количество кислорода, без которого наступили бы необратимые структурные изменения миокарда. Это так называемое базальное потребление, равное примерно 0,015 мл·г/мин и составляющее лишь незначительную часть от потребления O2 бьющимся сердцем.

 

Рис. 19.35. Зависимость потребления кислорода и КПД сердца собаки от развиваемой им мощности при изменениях периферического сопротивления и венозного возврата. Данные получены на сердечно–легочном препарате [по GollwitzerMeier, Kroetz. Klin. Wschr., 18, 869 (1939)]

 

Потребление питательных веществ. Количественный и качественный состав веществ, используемых сердцем для выработки энергии, может быть определен тем же путем, что и потребление кислорода. Для этого находят разницу концентраций того или иного вещества в артериях и коронарных венах и умножают ее на величину коронарного кровотока. Подобные эксперименты показали, что сердце в отличие, например, от скелетных мышц–«всеядный» орган (рис. 19.36.)

Особенность, которая заслуживает интереса,–это значительная доля свободных жирных кислот среди потребляемых сердцем веществ, а также тот факт, что сердце в отличие от скелетных мышц способно использовать молочную кислоту (лактат). При интенсивной физической нагрузке, когда мышцы в результате анаэробного гликолиза высвобождают в кровь большое количество лактата, это вещество служит дополнительным «топливом», необходимым для усиленной работы сердца. Расщепляя молочную кислоту, сердце не только получает энергию, но также способствует поддержанию постоянства рН крови.

Соотношение различных субстратов в общем балансе потребления питательных веществ сердцем зависит главным образом от их поступления (т. е. от их концентрации в артериальной крови). Вследствие такой способности сердца потреблять все доступные вещества главная опасность нарушения коронарного кровообращения заключается не в недостатке субстрата, а в дефиците кислорода.

Макроэргические фосфаты. Метаболическое расщепление различных веществ сопровождается образованием АТФ – непосредственного источника энергии для сокращений сердца. Содержание АТФ в миокарде составляет 4–6 мкмоль/г. Это количество невелико по сравнению с тем, которое требуется для сократительной деятельности миокарда; за несколько секунд работы сердца оно обновляется (т.е. расщепляется с образованием АДФ и неорганического фосфата и вновь ресинтезируется) несколько раз. В сердце обнаружен еще один макроэргический фосфат – креатинфосфат; содержание его примерно равно содержанию АТФ и составляет 7–8 мкмоль/г. Креатинфосфат служит особенно чувствительным показателем снабжения сердца питательными веществами и кислородом, так как от его расщепления зависит вначале метаболический ресинтез АТФ.

Кровоснабжение миокарда

Хотя питающие сердце коронарные сосуды относятся к большому кругу кровообращения (рис. 19.1), они обладают некоторыми особенностями, тесно связанными с деятельностью сердца. В связи с этим мы считаем уместным рассмотреть коронарное кровообращение в настоящей главе. У человека, как

 

 

Рис. 19.36. Относительный вклад различных веществ в окислительные обменные процессы сердца при покое и интенсивной работе. Потребление каждого из веществ выражено в процентах как часть общего потребления кислорода, приходящаяся на долю этого вещества [по KeuI et al. Pflugers Arch. ges Physiol., 282. 1 (1965)]

правило, имеются две коронарные артерии, отходящие от основания аорты. Правая коронарная артерия снабжает большую часть правого желудочка, некоторые отделы перегородки и заднюю стенку левого желудочка. Остальные отделы сердца снабжаются с помощью левой коронарной артерии. Отток крови осуществляется преимущественно в венозный синус, остальная кровь оттекает по передним сердечным венам и венам Тебезия.

Величина коронарного кровотока. В опытах на животных коронарный кровоток можно непосредственно измерить при помощи электромагнитных флоуметров. При определении его у человека приходится пользоваться непрямыми методами; некоторые из них основаны на оценке поглощения или разведения в сердце индифферентных газов (N2, аргона, ксенона) с учетом известной растворимости этих газов в тканях. Подобные исследования показали, что в покое величина коронарного кровотока у человека равна примерно 0,8–0,9 мл • г / мин что составляет около 5% общего минутного объема. При интенсивной мышечной работе коронарный кровоток может возрастать в четыре раза (табл. 19.2) и примерно во столько же раз увеличивается потребление сердцем кислорода.

Колебания коронарного кровотока во время сердечного цикла. Коронарный кровоток в отличие от кровообращения в других органах претерпевает значительные колебания, соответствующие периодам сердечного цикла. Эти периодические колебания обусловлены как пульсирующим характером давления в аорте, так и изменениями напряжения в стенке сердца. Под действием этого напряжения сдавливаются сосуды внутреннего и среднего слоев миокарда. В результате, как показано на рис. 19.37, кровоток в левой коронарной артерии в начале систолы полностью прекращается, и лишь в диастоле, когда напряжение в стенке миокарда падает, он достигает высокого значения. В бассейне правой коронарной артерии внутристеночное напряжение ниже, поэтому кровоток в ней изменяется в основном в соответствии с давлением в аорте. В результате увеличения внутристеночного напряжения отток крови из коронарного синуса во время систолы резко возрастает; во время диастолы он вновь понижается (рис. 19.37).

Регуляция коронарного кровотока. Даже в состоянии покоя сердце извлекает из крови намного больше кислорода, чем другие органы. При содержании O2 в артериальной крови 20 мл/дл экстракция кислорода сердцем составляет около 14 мл/дл (табл. 19.2). Поэтому при повышении нагрузки на сердце возрастающая потребность его в кислороде не может быть покрыта за счет увеличения экстракции кислорода. Повышенная потребность сердца в O2 удовлетворяется главным образом за счет увеличения коронарного кровотока. Это увеличение обусловлено расширением коронарных сосудов, т. е. снижением их гидродинамического сопротивления. Общепризнано, что наиболее мощным стимулом для расширения коронарных сосудов служит недостаток кислорода: дилатация коронарных сосудов наступает уже при снижении содержания O2 в крови на 5%, т.е. примерно на 1 мл/дл. К факторам, вызывающим расширение коронарных сосудов,

Таблица 19.2

А. Нормальные цифры давления в сердце и крупных сосудах у взрослого человека в покое, мм рт. ст.

 

Максимальное   систолическое давление

Конечно–    диастолическое давление

Среднее давление

Правое предсердие

 

5

Правый желудочек

25

5

 

 

Легочная артерия

25

10

 

 

Левое предсердие

10

Левый желудочек

120

10

 

 

Аорта

120

70

 

 

 

Б. Коронарный кровоток и разница по содержанию O2 между артериальной кровью и кровью коронарных вен (авРO2 ) у человека в покое и при нагрузке

 

 

 

В покое

При нагрузке

Коронарный кровоток, мл/г•мин

0,8

3,2

авРO2 , мл/дл крови

14

16

Содержание O2 в коронарных венах, мл/дл крови

6

4

 

 

Рис. 19.37. Изменения коронарного кровотока и их связь с систолой, диастолой и давлением в аорте

относятся также аденозин–вещество, играющее важную роль в распаде макроэргических фосфорных соединений [22], и повышение внеклеточной концентрации ионов K+. Прямое действие вегетативных нервов на коронарные сосуды трудно оценить, так как эти нервы одновременно влияют и на другие параметры деятельности сердца. Однако в недавних исследованиях были получены факты, свидетельствующие о прямом сосудосуживающем действии симпатических нервов и сосудорасширяющем парасимпатических нервов.

Факторы эндотелиального происхождения, например окись азота (NO), также способствуют расширению коронарных сосудов. Их выделение из эндотелия повышается при увеличении кровотока (т.е. сил сдвига, действующих на стенки сосудов), а также под действием различных веществ (ацетилхолина, гистамина, серотонина, норадреналина и других), прямой эффект которых тем самым изменяется [15].

Все эти факторы в совокупности образуют регуляторную систему, обладающую высокой надежностью. Недостаток того или другого компонента сильно отражается на регуляции.

Критерии достаточности коронарного кровообращения. Резервы кровоснабжения сердца. Кровоснабжение сердца является достаточным в том случае, если поступление кислорода соответствует потребности в нем. Соотношение этих двух параметров служит критерием достаточности коронарного кровоснабжения. Его значения ниже 1,2 указывают на критическое уменьшение оксигенации сердца (например, при коронарной недостаточности). Для оценки состояния коронарного кровообращения важен не только этот показатель достаточности коронарного кровообращения, но также резервы кровоснабжения сердца, критерием которых служит разница между максимально возможной доставкой O2 и реальным потреблением кислорода в покое, деленная на это реальное потребление. При полноценной способности к адаптации резервы коронарного кровоснабжения в 4–5 раз выше, чем количество, потребляемое в состоянии покоя.

Аноксия и реанимация. В связи с тем что обменные процессы в сердце почти целиком зависят от образования энергии в реакциях окисления, внезапное прекращение коронарного кровотока (ишемия) уже через несколько минут приводит к тяжелым нарушениям деятельности сердца. В опытах с прекращением доставки сердцу кислорода при ненарушенном коронарном кровотоке (аноксии) наблюдаются практически те же изменения: сокращения постепенно ослабляются, полости сердца расширяются и через 6–10 мин наступает остановка сердца. Сильное нарушение системы получения энергии в этих условиях приводит к резкому падению содержания макроэргических фосфатов (креатинфосфата и АТФ). Сердце способно в незначительной степени осуществлять анаэробный гликолиз, в результате которого образуется лактат; однако в отсутствие кислорода лактат не метаболизируется, поэтому концентрация его в коронарных венах становится выше, чем в артериях. Если аноксия продолжается больше 30 мин, происходит не только нарушение функции сердца, но и необратимые структурные изменения миокарда. В связи с этим восстановить деятельность сердца по истечении этого срока невозможно. Таким образом, 30 мин–это предельная длительность аноксии, после которой при нормальной температуре тела можно восстановить деятельность сердца. Этот срок, называемый пределом реанимации, может быть значительно увеличен, если снизить скорость обменных процессов путем охлаждения. Такой прием используется в современной кардиохирургии. Если же аноксии подвергается весь организм в целом (например, при удушье), то срок, в течение которого возможна успешная реанимация, меньше, так как уже через 8–10 мин аноксии наступают необратимые повреждения головного мозга, наиболее чувствительного к недостатку кислорода.

 

Сердечная недостаточность

Сердечной недостаточностью называют состояние, при котором сердце не может перекачать столько крови, сколько это необходимо для организма, хотя венозный приток достаточен и компенсаторные механизмы действуют. Такое состояние может наблюдаться даже в покое («недостаточность покоя»), но может становиться ощутимым лишь при физической нагрузке («недостаточность напряжения»). Недостаточность левого желудочка сопровождается застоем крови в легких, который проявляется такими симптомами, как одышка и цианоз; недостаточность же правого желудочка приводит к застою в системных венах, при котором возникают отеки и асцит. К нарушению нагнетательной функции сердца могут приводить различные состояния, не затрагивающие непосредственно сократимость миокарда (клапанные пороки, индурация перикарда, выраженная брадикардия и т.д.).

В узком смысле слова под сердечной недостаточностью понимают снижение сократительной способности сердца (недостаточность миокарда). Такие состояния наблюдаются при хронической перегрузке сердца давлением или объемом, а также при его гипоксии (коронаросклероз, инфаркт миокарда), воспалении (миокардит), отравлении некоторыми ядами и передозировке определенных лекарств.

Эти факторы могут приводить к нарушениям в самых различных звеньях процессов возбуждения, электромеханического сопряжения и сокращения в клетках миокарда. Для практических целей особенно важно выделять два типа недостаточности миокарда, различающихся по особенностям метаболизма макроэргических фосфатов, в частности креатинфосфата [15]. Первый тип характеризуется угнетением ресинтеза креатинфосфата вследствие недостаточности выработки энергии; он наблюдается при гипоксии миокарда, действии на него метаболических ядов и т.п. Снижение сократимости в этом случае наступает из–за недостаточного снабжения энергией сократительных белков и связано с уменьшением содержания креатинфосфата. При втором типе недостаточности миокарда запасы макроэргических фосфатов в сердце имеются, но не могут быть эффективно использованы из–за нарушения активации процессов электромеханического сопряжения. Этот тип наблюдается при передозировке антагонистов Са2+, отравлении местными анестетиками, барбитуратами и т. п. Для него характерно высокое содержание креатинфосфата в тканях сердца. Сократимость в этом случае может быть почти полностью восстановлена веществами, улучшающими электромеханическое сопряжение (катехоламинами, сердечными гликозидами). Напротив, при недостаточном снабжении энергией такие препараты могут даже ухудшать состояние; в подобных случаях следует снижать энергозатраты сердца, снижая нагрузку на него.

19.7. Литература

Учебники и руководства

1.          Berne R.M., Sperelakis N., Geiger S. R. (ed.). Handbook of Physiology. Section 2. The Cardiovascular System. Vol. I. The Heart. Bethesda. Amer. Physiol. Soc., 1979.

2. Carmeliet E., Vereecke J. Electrogenesis of the action potential and automacity. In. Berne et al. [I].

3. Cranefield P. F. The Conduction of the Cardiac Impulse. Mount Kisco–New York. Futura Publishing Company, 1979.

4. Delius W., Gerlach E., Grobecker H., Kubler W. (eds.). Calecholamines and the Heart. Berlin, Heidelberg, New York, Springer, 1981.

5. Fleckenstein A. Calcium Antagonism in Heart and Smooth Muscle–Experimental Facts and Therapeutic Prospects. New York–Chichester–Brisbane–Toronto– Singapure. Wi–ley–Interscience Pub!., 1983.

6. Fozzard H.A., Haber E., Jennings R.B., Katz A.M., Morgan H.E. (eds.). The Heart and Cardiovascular System. New York. Raven Press, 1986.

7. Hille В. Ionic Channels of Excitable Membranes. Sunderland Mass. Sinauer, 1984.

8. Longer G. A., Brady A. J. (eds.). The Mammalian Myocardium. New York. Wiley, 1974.

9. Noble D. The Initiation of the Heartbeat. Oxford. Clarendon Press, 1979.

10. Porter R., Fitzsimons D. W. (eds.). Physiological Basis of Starling's Law of the Heart. Ciba Foundation Symposium. Amsterdam–New York. Associated Scientific Publishers, 1974.

11. Ruegg J. C. Calcium in Muscle Activation. Berlin–Heidelberg–New York. Springer, 1986.

12. Rupp H. (ed.). Regulation of Heart Function–Basic Concepts and Clinical Applications. New York. Thieme Inc., 1986.  

Оригинальные статьи и обзоры

13. Allessie M.A., Bonke F., Schopman F.J.G. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ. Res., 33, 54 (1973).

14. Antoni H„ Jacob R., Kauftnann R. Mechanical response of the frog's and mammalian myocardium to modifications of the action potential duration by constant pulses. Pflugers Arch., 306, 33 (1969).

15. Bassenge E., Busse R. Endothelial modulation of coronary tone. Progress in Cardiovasc. Disease, 30, 349 (1981).

16. Di Francesco D. A new interpretation of the pacemaker current in calf Purkinje fibers. J. Physiol., 374, 359 (1981).

17. Irisawa H., Nakayama Т., Noma A. Membrane currents of single pacemaker cells from pabbit S–A and A–V nodes. In:

D. Noble and D. Powell (Edit.). Electrophysiology of Single Cardiac Cells. London. Academic Press, 1987.

18. Jacob R., Kissling G., Ebrecht G., Holubarsch C., Medugorac I.. Rupp H. Adaptive and pathological alternations in experimental cardiac hypertrophy. Adan. MyocardioL, 4, 55 (1983).

19. Jacob R., Just H.J., Holubarsch C. (eds.). Cardiac Energetics–Basic Mechanisms and Clinical Implications. Basic Res. CardioL, 82 (Suppl. 2) (1987).

20. Noble D. The surprising heart: A review of recent progress in cardiac electrophysiology." J. Physiol. (Lond.), 353, 1 (1984).

21. Renter H. Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ. Res., 34, 599 (1974).

22. Schrader J. Sites of action and production of adenosine in the heart. In: Burnstock G., Purinergic Receptors. London. Chapmann & Hall, pp. 120 (1981).

23. Trautwein W. Membrane currents in cardiac muscle fibres. Physiol Rev., 53, 793 (1973).

24. Weidmann S. The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle. J. Physiol., 187, 323 (1966).